-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlc2200.py
552 lines (397 loc) · 15.1 KB
/
lc2200.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import re
"""lc2200.py: A definition of the LC-2200 architecture."""
__author__ = "Christopher Tam"
# Define the name of the architecture
__name__ = 'LC-2200'
# Define overall architecture widths (in bits)
BIT_WIDTH = 32
# Define opcode widths (in bits)
OPCODE_WIDTH = 4
# Define register specifier widths (in bits)
REGISTER_WIDTH = 4
ALIASES = {
'.word':'fill',
'.fill':'fill'
}
REGISTERS = {
'$zero' : 0,
'$at' : 1,
'$v0' : 2,
'$a0' : 3,
'$a1' : 4,
'$a2' : 5,
'$t0' : 6,
'$t1' : 7,
'$t2' : 8,
'$s0' : 9,
'$s1' : 10,
'$s2' : 11,
'$k0' : 12,
'$sp' : 13,
'$fp' : 14,
'$ra' : 15}
SYMBOL_TABLE = {}
VALID_PARAMS = {}
PARAMS = {}
# Private Variables
OFFSET_SIZE = BIT_WIDTH - OPCODE_WIDTH - (REGISTER_WIDTH * 2)
assert(OFFSET_SIZE > 0) # Sanity check
UNUSED_SIZE = BIT_WIDTH - OPCODE_WIDTH - (REGISTER_WIDTH * 3)
assert(UNUSED_SIZE > 0) # Sanity check
SHF_IMM_SIZE = 5
SHF_UNUSED_SIZE = OFFSET_SIZE - SHF_IMM_SIZE - 2
assert(SHF_UNUSED_SIZE > 0) # Sanity check
RE_BLANK = re.compile(r'^\s*(!.*)?$')
RE_PARTS = re.compile(r'^\s*((?P<Label>\w+):)?\s*((?P<Opcode>\.?[\w]+)(?P<Operands>[^!]*))?(!.*)?')
def zero_extend(binary, target, pad_right=False):
if binary.startswith('0b'):
binary = binary[2:]
zeros = '0' * (target - len(binary))
if pad_right:
return binary + zeros
else:
return zeros + binary
def sign_extend(binary, target):
if binary.startswith('0b'):
binary = binary[2:]
sign = binary[0] if len(binary) > 1 else '0'
return sign * (target - len(binary)) + binary
def bin2hex(binary):
return '%0*X' % ((len(binary) + 3) // 4, int(binary, 2))
def hex2bin(hexadecimal):
return bin(int(hexadecimal, 16))[2:]
def dec2bin(num, bits):
"""Compute the 2's complement binary of an int value."""
return format(num if num >= 0 else (1 << bits) + num, '0{}b'.format(bits))
def parse_value(offset, size, pc=None, unsigned=False):
bin_offset = None
if type(offset) is str:
if pc is not None and offset in SYMBOL_TABLE:
offset = SYMBOL_TABLE[offset] - pc - 1
elif offset.startswith('0x'):
try:
bin_offset = hex2bin(offset)
except:
raise RuntimeError("'{}' is not in a valid hexadecimal format.".format(offset))
if len(bin_offset) > size:
raise RuntimeError("'{}' is too large for {}.".format(offset, __name__))
bin_offset = zero_extend(bin_offset, size)
elif offset.startswith('0b'):
try:
bin_offset = bin(int(offset))
except:
raise RuntimeError("'{}' is not in a valid binary format.".format(offset))
if len(bin_offset) > size:
raise RuntimeError("'{}' is too large for {}.".format(offset, __name__))
bin_offset = zero_extend(bin_offset, size)
if bin_offset is None:
try:
offset = int(offset)
except:
if pc is not None:
raise RuntimeError("'{}' cannot be resolved as a label or a value.".format(offset))
else:
raise RuntimeError("'{}' cannot be resolved as a value.".format(offset))
if unsigned:
bound = (2**size)
# >= bound because range is [0, 2^n - 1]
if offset < 0:
raise RuntimeError("'{}' cannot be a negative value for {}.".format(offset, __name__))
elif offset >= bound:
raise RuntimeError("'{}' is too large (as a value) or too far away (as a label) for {}.".format(offset, __name__))
else:
bound = 2**(size - 1)
if offset < -bound:
raise RuntimeError("'{}' is too small (as a value) or too far away (as a label) for {}.".format(offset, __name__))
elif offset >= bound:
raise RuntimeError("'{}' is too large (as a value) or too far away (as a label) for {}.".format(offset, __name__))
bin_offset = dec2bin(offset, size)
return bin_offset
class Instruction:
"""
This is the base class that all implementations of instructions must override.
"""
@classmethod
def opcode(cls):
"""Return the operation code for the given instruction as an integer."""
raise NotImplementedError()
def __init__(self, operands, pc, instruction):
self.__operands = operands
self.bin_operands = self.parse_operands(operands, pc, instruction)
self.__pc = pc
self.__instruction = instruction
@classmethod
def create(cls, operands, pc, instruction):
"""Generates a list of Instruction(s) for the given operands."""
raise NotImplementedError()
@classmethod
def pc(cls, pc, **kwargs):
"""Return the new PC after assembling the given instruction"""
# By default, return pc + 1
return pc + 1
@classmethod
def parse_operands(cls, operands, pc, instruction):
return ''
def binary(self):
"""Assemble the instruction into binary form.
Returns a string representation of the binary instruction.
"""
raise NotImplementedError()
def hex(self):
"""Assemble the instruction into binary form.
Returns a string representation of the binary instruction.
"""
return bin2hex(self.binary())
class RInstruction(Instruction):
"""
The base class for R-type instructions.
"""
__RE_R = re.compile(r'^\s*(?P<RX>\$\w+?)\s*,\s*(?P<RY>\$\w+?)\s*,\s*(?P<RZ>\$\w+?)\s*$')
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, pc, instruction)]
@classmethod
def parse_operands(cls, operands, pc, instruction):
# Define result
result_list = []
match = cls.__RE_R.match(operands)
if match is None:
raise RuntimeError("Operands '{}' are in an incorrect format.".format(operands.strip()))
for op in (match.group('RX'), match.group('RY'), match.group('RZ')):
if op in REGISTERS:
result_list.append(zero_extend(bin(REGISTERS[op])[2:], REGISTER_WIDTH))
else:
raise RuntimeError("Register identifier '{}' is not valid in {}.".format(op, __name__))
# Insert unused bits
result_list.insert(2, '0' * UNUSED_SIZE)
return ''.join(result_list)
def binary(self):
return zero_extend(bin(self.opcode()), OPCODE_WIDTH) + self.bin_operands
class IInstruction(Instruction):
"""
The base class for I-type instructions.
"""
__RE_I = re.compile(r'^\s*(?P<RX>\$\w+?)\s*,\s*(?P<RY>\$\w+?)\s*,\s*(?P<Offset>\S+?)\s*$')
__RE_OFF = re.compile(r'^\s*(?P<RX>\$\w+?)\s*,\s*(?P<Offset>\S+?)\s*\((?P<RY>\$\w+?)\)\s*$')
@classmethod
def is_offset_style(cls):
raise NotImplementedError()
@classmethod
def parse_operands(cls, operands, pc, instruction):
# Define result
result_list = []
match = cls.__RE_OFF.match(operands) if cls.is_offset_style() else cls.__RE_I.match(operands)
if match is None:
raise RuntimeError("Operands '{}' are in an incorrect format.".format(operands.strip()))
for op in (match.group('RX'), match.group('RY')):
if op in REGISTERS:
result_list.append(zero_extend(bin(REGISTERS[op]), REGISTER_WIDTH))
else:
raise RuntimeError("Register identifier '{}' is not valid in {}.".format(op, __name__))
result_list.append(parse_value(match.group('Offset'), OFFSET_SIZE, pc))
return ''.join(result_list)
def binary(self):
return zero_extend(bin(self.opcode()), OPCODE_WIDTH) + self.bin_operands
class BRInstruction(IInstruction):
"""
The base class for branch versions of I-type instructions.
"""
@classmethod
def is_offset_style(cls):
return False
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, pc, instruction)]
def binary(self):
padded_opcode = zero_extend(bin(self.opcode()), OPCODE_WIDTH)
return zero_extend(padded_opcode + self.bin_operands, BIT_WIDTH, pad_right=True)
class add(RInstruction):
@classmethod
def opcode(cls):
return 0
class neg(RInstruction):
@classmethod
def opcode(cls):
return 1
class addi(IInstruction):
@classmethod
def opcode(cls):
return 2
@classmethod
def is_offset_style(cls):
return False
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, None, instruction)]
class lw(IInstruction):
@classmethod
def opcode(cls):
return 3
@classmethod
def is_offset_style(cls):
return True
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, None, instruction)]
class sw(IInstruction):
@classmethod
def opcode(cls):
return 4
@classmethod
def is_offset_style(cls):
return True
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, None, instruction)]
class beq(BRInstruction):
@classmethod
def opcode(cls):
return 5
class jalr(Instruction):
__RE_JALR = re.compile(r'^\s*(?P<AT>\$\w+?)\s*,\s*(?P<RA>\$\w+?)\s*$')
@classmethod
def opcode(cls):
return 6
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, pc, instruction)]
@classmethod
def pc(cls, pc, **kwargs):
return pc + 1
@classmethod
def parse_operands(cls, operands, pc, instruction):
# Define result
result_list = []
match = cls.__RE_JALR.match(operands)
if match is None:
raise RuntimeError("Operands '{}' are in an incorrect format.".format(operands.strip()))
for op in (match.group('RA'), match.group('AT')):
if op in REGISTERS:
result_list.append(zero_extend(bin(REGISTERS[op]), REGISTER_WIDTH))
else:
raise RuntimeError("Register identifier '{}' is not valid in {}.".format(op, __name__))
return ''.join(result_list)
def binary(self):
padded_opcode = zero_extend(bin(self.opcode()), OPCODE_WIDTH)
return zero_extend(padded_opcode + self.bin_operands, BIT_WIDTH, pad_right=True)
class spop(Instruction):
@classmethod
def opcode(cls):
return 7
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, pc, instruction)]
def binary(self):
padded_opcode = zero_extend(bin(self.opcode()), OPCODE_WIDTH)
return zero_extend(padded_opcode, BIT_WIDTH, pad_right=True)
class la(Instruction):
"""la $RX, label
Equivalent to:
jalr $RX, $RX - to get current pc
lw $RX, 2($RX) - to load the word hardcoded_label_value
beq $zero, $zero, 1 - to jump to the next instruction after label value
.fill hardcoded_label_value
"""
__RE_LA = re.compile(r'^\s*(?P<RX>\$\w+?)\s*,\s*(?P<Label>\w+?)\s*$')
@classmethod
def opcode(cls):
return None
@classmethod
def create(cls, operands, pc, instruction):
match = cls.__RE_LA.match(operands)
if match is None:
raise RuntimeError("Operands '{}' are in an incorrect format.".format(operands.strip()))
RX = match.group('RX')
label = match.group('Label')
if RX == '$zero':
raise RuntimeError("'la' instruction cannot be used with '$zero' register.")
elif label not in SYMBOL_TABLE:
raise RuntimeError("Label '{}' cannot be resolved.".format(label))
result = []
result.append(jalr.create(operands='{0}, {0}'.format(RX), pc=pc+1, instruction='jalr'))
result.append(lw.create(operands='{0}, 2({0}', pc=pc+2, instruction='lw').format(RX))
result.append(beq.create(operands='$zero, $zero, 1', pc=pc+3, instruction='beq'))
result.append(fill.binary(operands=SYMBOL_TABLE[label], pc=pc+4, instruction='.fill'))
return result
@classmethod
def pc(cls, pc, **kwargs):
return pc + 4
class halt(spop):
@classmethod
def create(cls, operands, pc, instruction):
return [cls('', pc, instruction)]
class noop(add):
"""noop
Equivalent to:
add $zero, $zero, $zero
"""
@classmethod
def create(cls, operands, pc, instruction):
return [cls('$zero, $zero, $zero', pc, instruction)]
class ret(jalr):
"""ret
Equivalent to:
jalr $ra, $zero
"""
@classmethod
def create(cls, operands, pc, instruction):
return [cls('$ra, $zero', pc, instruction)]
class fill(Instruction):
@classmethod
def opcode(cls):
return None
@classmethod
def create(cls, operands, pc, instruction):
return [cls(operands, pc, instruction)]
@classmethod
def parse_operands(cls, operands, pc, instruction):
if type(operands) is str:
operands = operands.strip()
return parse_value(operands, BIT_WIDTH)
def binary(self):
return self.bin_operands
# Functions expected by the assembler
def receive_params(value_table):
if not value_table:
return
for key in value_table:
key = key.lower()
if key not in VALID_PARAMS:
raise RuntimeError('{} is not a valid custom parameter.')
if VALID_PARAMS[key]:
try:
PARAMS[key] = VALID_PARAMS[key](value_table[key])
except:
raise RuntimeError('{} parameter is not of the valid {}.'.format(key, VALID_PARAMS[key]))
def is_blank(line):
"""Return whether a line is blank and not an instruction."""
return RE_BLANK.match(line) is not None
def get_parts(line):
"""Break down an instruction into 3 parts: Label, Opcode, Operand"""
m = RE_PARTS.match(line)
try:
return m.group('Label'), m.group('Opcode'), m.group('Operands')
except:
return None
def instruction_class(name):
"""Translate a given instruction name to its corresponding class name."""
return ALIASES.get(name, name)
def validate_pc(pc):
"""Returns or modifies the PC to a permitted value, if possible. Throws an error if the PC is invalid."""
if pc >= 2**BIT_WIDTH:
raise RuntimeError("PC value {} is too large for {} bits.".format(pc, BIT_WIDTH))
return pc
def output_generator(assembled_dict, output_format='binary'):
"""Returns a generator that creates output from {pc : assembly}-formatted dictionary."""
pc = 0
count = 0
while count < len(assembled_dict):
instr = None
if pc in assembled_dict:
instr = assembled_dict[pc]
pc += 1
count += 1
else:
instr = noop.create('', pc, 'noop')
pc = instr.pc(pc)
yield getattr(instr, output_format)()