-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.py
86 lines (66 loc) · 2.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
from util.metrics import PSNR, SSIM
def train(opt, data_loader, model, visualizer):
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
tot_errors = None
avg_errors = None
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
errors = model.get_current_errors()
if tot_errors == None:
tot_errors = errors.copy()
avg_errors = errors.copy()
else:
for k in errors:
tot_errors[k] += errors[k]
# display on visdom
if total_steps % opt.display_freq == 0:
results = model.get_current_visuals()
# calc psnr
# psnrMetric = PSNR(results['s_dehazing_img'],
# results['clear_img'])
# print('PSNR on Train = %f' % (psnrMetric))
visualizer.display_current_results(results, epoch)
if total_steps % opt.print_freq == 0:
#errors = model.get_current_errors()
ttot_errors = tot_errors.copy()
for k in tot_errors:
avg_errors[k] = ttot_errors[k] / (i + 1)
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, avg_errors, t)
#if opt.display_id > 0 and total_steps % opt.show_freq == 0:
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, avg_errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay,
time.time() - epoch_start_time))
if epoch > opt.niter:
model.update_learning_rate()
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
model = create_model(opt)
visualizer = Visualizer(opt)
train(opt, data_loader, model, visualizer)