清华大学2022人工神经网络课程小组作业仓库。本仓库利用jittor框架复现了论文 Prefix-tuning: Optimizing continuous prompts for generation 的实验结果。仓库同时提供了pytorch和jittor版的代码。请先进入./Pytorch
或./Jittor
中的一个并执行下面步骤。
环境配置:
pip install -r requirements.txt
运行finetune版:
bash train_finetune.sh
运行prefix-tuning版:
bash train_prefix.sh
baseline.yaml提供了以下可调参数:
dataset: webnlg # 数据集:[webnlg, e2e, animal, person]
pretrained: gpt2-medium
save_ckpt: ./temp.pth
batch_size: 5
max_epoch: 5
lr: 5e-5
max_length: 256
warmup_steps: 0
output_dir: ./outputs/output.txt
non_prefix_layers: [] # 不添加前缀参数的层数,仅在prefix-tuning方法下有用
# 生成方式
decode_strategy: top-p
temperature: 1.0
top_p: 0.9
top_k: 40