This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathnet_utils.go
307 lines (276 loc) · 7.9 KB
/
net_utils.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package netaddr
import (
"bytes"
"fmt"
"math/big"
"net"
"strings"
)
// NetSize returns the size of the given IPNet in terms of the number of
// addresses. It always includes the network and broadcast addresses.
func NetSize(n *net.IPNet) *big.Int {
ones, bits := n.Mask.Size()
return big.NewInt(0).Lsh(big.NewInt(1), uint(bits-ones))
}
// ParseIP is like net.ParseIP except that it parses IPv4 addresses as 4 byte
// addresses instead of 16-byte mapped IPv6 addresses. This has been one of my
// biggest gripes against the net package.
func ParseIP(address string) net.IP {
if strings.Contains(address, ":") {
return net.ParseIP(address)
}
return net.ParseIP(address).To4()
}
// ParseCIDR is like net.ParseCIDR except that it parses IPv4 addresses as 4
// byte addresses instead of 16-byte mapped IPv6 addresses. Much like ParseIP.
func ParseCIDR(cidr string) (net.IP, *net.IPNet, error) {
ip, ipNet, err := net.ParseCIDR(cidr)
if err != nil {
return net.IP{}, nil, err
}
if strings.Contains(cidr, ":") {
return ip, ipNet, nil
}
return ip.To4(), ipNet, nil
}
// ParseCIDRToNet is like ParseCIDR except that it only returns one *net.IPNet
// that unifies the IP address and the mask. It leaves out the network address
// which ParseCIDR returns. This may be considered an abuse of the IPNet
// construct as it is documented that IP is supposed to be the "network
// number". However, the public IPNet interface does not dissallow it and this
// usage has been spotted in the wild.
func ParseCIDRToNet(cidr string) (*net.IPNet, error) {
ip, ipNet, err := ParseCIDR(cidr)
if err != nil {
return nil, err
}
return &net.IPNet{IP: ip, Mask: ipNet.Mask}, nil
}
// ParseNet parses an IP network from a CIDR. Unlike net.ParseCIDR, it does not
// allow a CIDR where the host part is non-zero. For example, the following
// CIDRs will result in an error: 203.0.113.1/24, 2001:db8::1/64, 10.0.20.0/20
func ParseNet(cidr string) (parsed *net.IPNet, err error) {
ip, parsed, err := net.ParseCIDR(cidr)
if err != nil {
return nil, err
}
if !ip.Equal(parsed.IP) {
err = fmt.Errorf("Host part is not zero")
return nil, err
}
return
}
// NewIP returns a new IP with the given size. The size must be 4 for IPv4 and
// 16 for IPv6.
func NewIP(size int) net.IP {
if size == 4 {
return net.ParseIP("0.0.0.0").To4()
}
if size == 16 {
return net.ParseIP("::")
}
panic("Bad value for size")
}
// NetworkAddr returns the first address in the given network, or the network address.
func NetworkAddr(n *net.IPNet) net.IP {
network := NewIP(len(n.IP))
for i := 0; i < len(n.IP); i++ {
network[i] = n.IP[i] & n.Mask[i]
}
return network
}
// BroadcastAddr returns the last address in the given network, or the broadcast address.
func BroadcastAddr(n *net.IPNet) net.IP {
// The golang net package doesn't make it easy to calculate the broadcast address. :(
broadcast := NewIP(len(n.IP))
for i := 0; i < len(n.IP); i++ {
broadcast[i] = n.IP[i] | ^n.Mask[i]
}
return broadcast
}
// ContainsNet returns true if net2 is a subset of net1. To be clear, it
// returns true if net1 == net2 also.
func ContainsNet(net1, net2 *net.IPNet) bool {
// If the two networks are different IP versions, return false
if len(net1.IP) != len(net2.IP) {
return false
}
if !net1.Contains(net2.IP) {
return false
}
if !net1.IP.Equal(net2.IP) {
return true
}
return bytes.Compare(net1.Mask, net2.Mask) <= 0
}
// netDifference returns the set difference a - b. It returns the list of CIDRs
// in order from largest to smallest. They are *not* sorted by network IP.
func netDifference(a, b *net.IPNet) (result []*net.IPNet) {
// If the two networks are different IP versions, return a
if len(a.IP) != len(b.IP) {
return []*net.IPNet{a}
}
// If b contains a then the difference is empty
if ContainsNet(b, a) {
return
}
// If a doesn't contain b then the difference is equal to a
if !ContainsNet(a, b) {
return []*net.IPNet{a}
}
// If two nets overlap then one must contain the other. At this point, we
// know a contains b and b is smaller than a. Cut a in half and recurse on
// the one that overlaps
first, second := divideNetInHalf(a)
if bytes.Compare(b.IP, second.IP) < 0 {
return append([]*net.IPNet{second}, netDifference(first, b)...)
}
return append([]*net.IPNet{first}, netDifference(second, b)...)
}
// divideNetInHalf returns the given net as two equally sized halves
func divideNetInHalf(n *net.IPNet) (a, b *net.IPNet) {
// Get the size of the original netmask
ones, bits := n.Mask.Size()
// Netmask has one more 1. Net is half the size of original.
mask := net.CIDRMask(ones+1, bits)
// Create a new IP to fill in for the second half
ip := net.ParseIP("::")
if bits == 32 {
ip = net.ParseIP("0.0.0.0").To4()
}
// Fill in the new IP
for i := 0; i < bits/8; i++ {
// Puts a 1 in the new bit since this is the second half
extraOne := mask[i] ^ n.Mask[i]
// New IP is the same as old IP with the extra one at the end
ip[i] = mask[i] & (n.IP[i] | extraOne)
}
a = &net.IPNet{IP: n.IP, Mask: mask}
b = &net.IPNet{IP: ip, Mask: mask}
return
}
// canCombineNets returns true if the two networks, a and b, can be combined
// into one larger cidr twice the size. If true, it returns the combined
// network.
func canCombineNets(a, b *net.IPNet) (ok bool, newNet *net.IPNet) {
if a.IP.Equal(b.IP) {
return
}
if bytes.Compare(a.Mask, b.Mask) != 0 {
return
}
ones, bits := a.Mask.Size()
newNet = &net.IPNet{IP: a.IP, Mask: net.CIDRMask(ones-1, bits)}
if newNet.Contains(b.IP) {
ok = true
return
}
return
}
// ipToNet converts the given IP to a /32 or /128 network depending on the type
// of address.
func ipToNet(ip net.IP) *net.IPNet {
size := 8 * len(ip)
return &net.IPNet{IP: ip, Mask: net.CIDRMask(size, size)}
}
// incrementIP returns the given IP + 1
func incrementIP(ip net.IP) (result net.IP) {
result = make([]byte, len(ip)) // start off with a nice empty ip of proper length
carry := true
for i := len(ip) - 1; i >= 0; i-- {
result[i] = ip[i]
if carry {
result[i]++
if result[i] != 0 {
carry = false
}
}
}
return
}
// decrementIP returns the given IP - 1
func decrementIP(ip net.IP) (result net.IP) {
result = make([]byte, len(ip)) // start off with a nice empty ip of proper length
borrow := true
for i := len(ip) - 1; i >= 0; i-- {
result[i] = ip[i]
if borrow {
result[i]--
if result[i] != 255 { // if we overflowed, we'd end up here
borrow = false
}
}
}
return
}
// expandNet returns a slice containing all of the IPs in the given net up to
// the given limit
func expandNet(n *net.IPNet, limit int) []net.IP {
ones, bits := n.Mask.Size()
size := limit
max := 1 << 30
if bits-ones < 30 {
max = 1 << uint(bits-ones)
}
if max < size {
size = max
}
result := make([]net.IP, size)
next := n.IP
for i := 0; i < size; i++ {
result[i] = next[:]
next = incrementIP(next)
}
return result
}
// IPLessThan compare two ip addresses true
// ordered by ipv4 first, then ipv6 later
// then by section left-most is most significant
// e.g.
// 10.0.0.0
// 10.0.0.1
// 192.169.0.1
// 2001:db8::
func IPLessThan(a, b net.IP) bool {
if len(a) != len(b) { // ipv6 comes after ipv4
return len(a) < len(b)
}
for i := range a { // go left to right and compare each one
if a[i] != b[i] {
return a[i] < b[i]
}
}
return false // they are equal
}
// IPMin returns the minimum of a and b
func IPMin(a, b net.IP) net.IP {
if IPLessThan(a, b) {
return a
}
return b
}
// IPMax returns the maximum of a and b
func IPMax(a, b net.IP) net.IP {
if IPLessThan(a, b) {
return b
}
return a
}
// IPv4 returns the IP address (in 4-byte form) of the
// IPv4 address a.b.c.d.
func IPv4(a, b, c, d byte) net.IP {
p := make(net.IP, net.IPv4len)
p[0] = a
p[1] = b
p[2] = c
p[3] = d
return p
}
// IPv4Net returns the IPNet (in 4-byte form) of the
// IPv4 address a.b.c.d/p.
func IPv4Net(a, b, c, d byte, p int) net.IPNet {
return net.IPNet{
IP: IPv4(a, b, c, d),
Mask: net.CIDRMask(p, 8*net.IPv4len),
}
}