-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_cross_modal_associations_task_relu.py
253 lines (208 loc) · 11.2 KB
/
plot_cross_modal_associations_task_relu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Plot layer outputs of the model for the cross-modal associations task with ReLU activations"""
import argparse
import random
import sys
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional
import torch.backends.cudnn as cudnn
import torchvision
from torchvision.transforms import Lambda
import utils.checkpoint
from data.cross_modal_associations_dataset import CrossModalAssociationsDataset
from functions.plasticity_functions import InvertedOjaWithSoftUpperBound
from models.network_models import CrossModalAssociationsReLU
from models.protonet_models import ProtoNet
def main():
parser = argparse.ArgumentParser(description='Cross-modal associations task plotting')
parser.add_argument('--checkpoint_path', default='', type=str, metavar='PATH',
help='Path to checkpoint (default: none)')
parser.add_argument('--check_params', default=1, type=int, choices=[0, 1], metavar='CHECK_PARAMS',
help='When loading from a checkpoint check if the model was trained with the same parameters '
'as requested now (default: 1)')
parser.add_argument('--sequence_length', default=3, type=int, metavar='N',
help='Number of audio-image pairs per example (default: 3)')
parser.add_argument('--test_classes', default=list(range(10)), nargs='+', type=int, metavar='TEST_CLASSES',
help='Classes used during inference (default: list(range(10))')
parser.add_argument('--dataset_size', default=10000, type=int, metavar='DATASET_SIZE',
help='Number of examples in the dataset (default: 10000)')
parser.add_argument('--num_mfcc', default=20, type=int, metavar='NUM_MFCC',
help='Number of Mel-frequency cepstrum coefficients (default: 20)')
parser.add_argument('--num_mfcc_time_samples', default=30, type=int, metavar='NUM_MFCC_TIME_SAMPLES',
help='Number of time samples for the Mel-frequency cepstrum coefficients (default: 30)')
parser.add_argument('--embedding_size', default=64, type=int, metavar='N',
help='Embedding size (default: 64)')
parser.add_argument('--memory_size', default=100, type=int, metavar='N',
help='Size of the memory matrix (default: 100)')
parser.add_argument('--w_max', default=1.0, type=float, metavar='N',
help='Soft maximum of Hebbian weights (default: 1.0)')
parser.add_argument('--gamma_pos', default=0.1, type=float, metavar='N',
help='Write factor of Hebbian rule (default: 0.1)')
parser.add_argument('--gamma_neg', default=0.1, type=float, metavar='N',
help='Forget factor of Hebbian rule (default: 0.1)')
parser.add_argument('--seed', default=None, type=int, metavar='N',
help='Seed for initializing (default: none)')
parser.add_argument('--data_seed', default=None, type=int, metavar='N',
help='Seed for the dataset (default: none)')
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Data loading code
audio_transform = torchvision.transforms.Compose([
# Transpose from DxT to TxD
Lambda(lambda mfcc: mfcc.transpose(1, 0)),
# Add channel dimension
Lambda(lambda mfcc: mfcc.unsqueeze(0))
])
image_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
])
test_set = CrossModalAssociationsDataset(root='./data', dataset_size=args.dataset_size,
sequence_length=args.sequence_length, num_mfcc=args.num_mfcc,
num_mfcc_time_samples=args.num_mfcc_time_samples, train=False,
classes=args.test_classes, image_transform=image_transform,
audio_transform=audio_transform, rng=np.random.default_rng(args.data_seed))
# Create ProtoNetSpiking
image_embedding_layer = ProtoNet()
mfcc_embedding_layer = ProtoNet()
# Create the model
model = CrossModalAssociationsReLU(
output_size=784,
memory_size=args.memory_size,
mfcc_embedding_layer=mfcc_embedding_layer,
image_embedding_layer=image_embedding_layer,
plasticity_rule=InvertedOjaWithSoftUpperBound(w_max=args.w_max,
gamma_pos=args.gamma_pos,
gamma_neg=args.gamma_neg))
# Load checkpoint
if args.checkpoint_path:
print("=> loading checkpoint '{}'".format(args.checkpoint_path))
checkpoint = utils.checkpoint.load_checkpoint(args.checkpoint_path, device)
best_loss = checkpoint['best_loss']
epoch = checkpoint['epoch']
print("Best loss {}".format(best_loss))
print("Epoch {}".format(epoch))
if args.check_params:
for key, val in vars(args).items():
if key not in ['check_params', 'seed', 'data_seed', 'checkpoint_path']:
if vars(checkpoint['params'])[key] != val:
print("=> You tried to load a model that was trained on different parameters as you requested "
"now. You may disable this check by setting `check_params` to 0. Aborting...")
sys.exit()
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
if k.startswith('module.'):
k = k[len('module.'):] # remove `module.`
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
# Switch to evaluate mode
model.eval()
# Get dataset example and run the model
mfcc_sequence, image_sequence, mfcc_query, image_target, targets = test_set[0]
mfcc_sequence = mfcc_sequence.unsqueeze(0)
image_sequence = image_sequence.unsqueeze(0)
mfcc_query = mfcc_query.unsqueeze(0)
outputs, encoding_outputs, writing_outputs, reading_outputs = model(
mfcc_sequence, image_sequence, mfcc_query)
# Get the outputs
mfcc_encoded = encoding_outputs[0].detach().numpy()
images_encoded = encoding_outputs[1].detach().numpy()
query_encoded = encoding_outputs[2].detach().numpy()
mem = writing_outputs[0].detach().numpy()
write_key = writing_outputs[1].detach().numpy()
write_val = writing_outputs[2].detach().numpy()
read_key = reading_outputs[0].detach().numpy()
read_val = reading_outputs[1].detach().numpy()
outputs = outputs.view(1, 28, 28).detach().numpy()
# Make some plots
fig, ax = plt.subplots(nrows=2, ncols=mfcc_sequence.size()[1] + 1, sharex='all')
for i in range(mfcc_sequence.size()[1]):
image = mfcc_sequence[0][i].numpy()
ax[0, i].imshow(np.transpose(image, (2, 1, 0)), interpolation='nearest', cmap='viridis', origin='lower')
ax[0, i].set(title='Digit {}'.format(targets[0][i]))
image = image_sequence[0][i].numpy()
ax[1, i].imshow(np.transpose(image, (1, 2, 0)), aspect='equal', cmap='gray', vmin=0, vmax=1)
ax[0, i].set_axis_off()
ax[1, i].set_axis_off()
image = mfcc_query[0].numpy()
ax[0, -1].imshow(np.transpose(image, (2, 1, 0)), interpolation='nearest', cmap='viridis', origin='lower')
ax[0, -1].set(title='Query digit {}'.format(targets[2]))
ax[1, -1].imshow(np.transpose(outputs, (1, 2, 0)),
aspect='equal', cmap='gray', vmin=np.min(outputs), vmax=np.max(outputs))
ax[1, -1].set(title='Reconstructed image')
ax[0, -1].set_axis_off()
ax[1, -1].set_axis_off()
plt.tight_layout()
fig, ax = plt.subplots(nrows=3, ncols=1, sharex='col')
ax[0].pcolormesh(mfcc_encoded[0].T, cmap='binary')
ax[0].set_ylabel('mfcc')
ax[1].pcolormesh(images_encoded[0].T, cmap='binary')
ax[1].set_ylabel('images')
ax[2].pcolormesh(query_encoded[0].T, cmap='binary')
ax[2].set_ylabel('query')
plt.tight_layout()
fig, ax = plt.subplots(nrows=2, ncols=1, sharex='col')
ax[0].pcolormesh(write_key[0].T, cmap='binary')
ax[0].set_ylabel('write keys')
ax[1].pcolormesh(write_val[0].T, cmap='binary')
ax[1].set_ylabel('write values')
plt.tight_layout()
fig, ax = plt.subplots(nrows=1, ncols=1, sharex='all')
ax.matshow(mem[0], cmap='RdBu')
plt.tight_layout()
fig, ax = plt.subplots(nrows=2, ncols=1, sharex='col')
ax[0].pcolormesh(read_key[0].T, cmap='binary')
ax[0].set_ylabel('read keys')
ax[1].pcolormesh(read_val[0].T, cmap='binary')
ax[1].set_ylabel('read values')
plt.tight_layout()
fig, ax = plt.subplots(nrows=1, ncols=1, sharex='all')
ax.imshow(np.transpose(outputs, (1, 2, 0)), aspect='equal', cmap='gray', vmin=np.min(outputs), vmax=np.max(outputs))
ax.set(title='Reconstructed image')
plt.tight_layout()
msd_target = []
msd_other1 = []
msd_other2 = []
for i in range(1000):
mfcc_sequence, image_sequence, mfcc_query, image_target, targets = test_set[0]
mfcc_sequence = mfcc_sequence.unsqueeze(0)
image_sequence = image_sequence.unsqueeze(0)
mfcc_query = mfcc_query.unsqueeze(0)
# targets: (mfcc_class_sequence, image_class_sequence, mfcc_query_class, image_target_class)
image_classes = np.array(targets[1])
target_class = targets[3]
outputs, *_ = model(mfcc_sequence, image_sequence, mfcc_query)
outputs = outputs.view(1, 28, 28).detach()
idc = np.where(image_classes != target_class)[0]
msd_target.append(torch.nn.functional.mse_loss(outputs, image_target).item())
msd_other1.append(torch.nn.functional.mse_loss(outputs, image_sequence[:, idc[0]].squeeze(0)).item())
msd_other2.append(torch.nn.functional.mse_loss(outputs, image_sequence[:, idc[1]].squeeze(0)).item())
print('Target: ', np.mean(msd_target), '+-', np.std(msd_target))
print('Target median: ', np.median(msd_target), np.percentile(msd_target, [25, 75]))
print('Other 1: ', np.mean(msd_other1), '+-', np.std(msd_other1))
print('Other 1 median: ', np.median(msd_other1), np.percentile(msd_other1, [25, 75]))
print('Other 2: ', np.mean(msd_other2), '+-', np.std(msd_other2))
print('Other 2 median: ', np.median(msd_other2), np.percentile(msd_other2, [25, 75]))
msd_other = np.concatenate((msd_other1, msd_other2))
print('Other: ', np.mean(msd_other), '+-', np.std(msd_other))
print('Other median: ', np.median(msd_other), np.percentile(msd_other, [25, 75]))
plt.figure()
plt.hist(msd_target, density=True, bins=30) # density=False would make counts
plt.ylabel('Probability')
plt.xlabel('Data')
plt.figure()
plt.hist(msd_other1, density=True, bins=30) # density=False would make counts
plt.ylabel('Probability')
plt.xlabel('Data')
plt.figure()
plt.hist(msd_other2, density=True, bins=30) # density=False would make counts
plt.ylabel('Probability')
plt.xlabel('Data')
plt.show()
if __name__ == '__main__':
main()