-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreinforcement_learning_task_relu.py
416 lines (347 loc) · 20 KB
/
reinforcement_learning_task_relu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import argparse
import collections
import json
import os
import random
import socket
import sys
import warnings
from datetime import datetime
from typing import List, Union, Optional
import numpy as np
import torch
import torch.nn.functional
from torch.backends import cudnn
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import utils.checkpoint
from agents.ppo import PPO
from environments.concentration import Concentration
from environments.multiprocessing_environment import make_vec_envs, PyTorchVecEnv
from functions.plasticity_functions import InvertedOjaWithSoftUpperBound
from models.network_models import ReinforcementLearningReLU
from policies.policy import Policy
from storage.rollout_storage import RolloutStorage
parser = argparse.ArgumentParser(description='Reinforcement learning task training with ReLU activations')
parser.add_argument('--num_envs', default=64, type=int, metavar='NUM_ENVS',
help='Number of parallel environments (default: 64)')
parser.add_argument('--num_cells', default=4, type=int, metavar='NUM_CELLS',
help='Number of cells (default: 4)')
parser.add_argument('--card_shape', default=10, type=int, metavar='CARD_SHAPE',
help='Shape of each card on the grid (default: 10)')
parser.add_argument('--resample_cards', action='store_true',
help='Sample a new deck of cards for each game.')
parser.add_argument('--match_reward', default=25.0, type=float, metavar='MATCH_REWARD',
help='Reward the agent receives when it has flipped two matching cards (default: 25.0)')
parser.add_argument('--flip_penalty', default=-0.5, type=float, metavar='FLIP_PENALTY',
help='Penalty for each card the agent flips (default: -0.5)')
parser.add_argument('--embedding_size', default=80, type=int, metavar='N',
help='Embedding size (default: 80)')
parser.add_argument('--memory_size', default=100, type=int, metavar='N',
help='Size of the memory matrix (default: 100)')
parser.add_argument('--w_max', default=1.0, type=float, metavar='N',
help='Soft maximum of Hebbian weights (default: 1.0)')
parser.add_argument('--gamma_pos', default=0.1, type=float, metavar='N',
help='Write factor of Hebbian rule (default: 0.1)')
parser.add_argument('--gamma_neg', default=0.1, type=float, metavar='N',
help='Forget factor of Hebbian rule (default: 0.1)')
parser.add_argument('--use_rms_prop', action='store_true',
help='Use RMSprop optimizer instead of Adam (only for A2C)')
parser.add_argument('--rms_prop_eps', default=1e-5, type=float, metavar='N',
help='Epsilon parameter of RMSprop (default: 1e-5)')
parser.add_argument('--rms_prop_alpha', default=0.99, type=float, metavar='N',
help='Alpha parameter of RMSprop (default: 0.99)')
parser.add_argument('--adam_eps', default=1e-5, type=float, metavar='N',
help='Epsilon parameter of Adam (default: 1e-5)')
parser.add_argument('--num_env_steps', default=100e6, type=int, metavar='N',
help='Number of environment steps to train (default: 100e6)')
parser.add_argument('--num_steps', default=10, type=int, metavar='NUM_STEPS',
help='The number of forward steps (default: 10)')
parser.add_argument('--learning_rate', default=3e-4, type=float, metavar='N',
help='Initial learning rate (default: 3e-4)')
parser.add_argument('--decay_lr_linearly', action='store_true',
help='Use a linearly decaying learning rate')
parser.add_argument('--learning_rate_decay', default=1.0, type=float, metavar='N',
help='Learning rate decay if not using linear decay (default: 1.0)')
parser.add_argument('--decay_learning_rate_every', default=2000, type=int, metavar='N',
help='Decay the learning rate every N updates (default: 2000)')
parser.add_argument('--discount_factor', default=0.99, type=float, metavar='N',
help='Factor for calculating discounted rewards (default: 0.99)')
parser.add_argument('--ppo_clip_param', default=0.2, type=float, metavar='N',
help='PPO clip parameter (default: 0.2)')
parser.add_argument('--ppo_batches', default=16, type=int, metavar='N',
help='Number of PPO batches (default: 16)')
parser.add_argument('--ppo_epochs', default=4, type=int, metavar='N',
help='Number of PPO epochs (default: 4)')
parser.add_argument('--value_coefficient', default=0.1, type=float, metavar='N',
help='Value loss weight factor (default: 0.1)')
parser.add_argument('--entropy_coefficient', default=0.01, type=float, metavar='N',
help='Entropy loss weight factor (default: 0.01)')
parser.add_argument('--normalize_advantage', action='store_true',
help='Whether to normalize the advantage in A2C or not')
parser.add_argument('--use_smooth_l1_loss', action='store_true',
help='Use smooth L1 for the value loss instead of MSE loss in A2C')
parser.add_argument('--max_grad_norm', default=0.5, type=float, metavar='N',
help='Gradients with an L2 norm larger than max_grad_norm will be clipped '
'to have an L2 norm of max_grad_norm. If non-positive, then the gradient will '
'not be clipped. (default: 0.5)')
parser.add_argument('--start_update', default=0, type=int, metavar='N',
help='Manual update number (useful on restarts, default: 0)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='Path to latest checkpoint (default: none)')
parser.add_argument('--evaluate', action='store_true',
help='Evaluate the model')
parser.add_argument('--logging', action='store_true',
help='Write tensorboard logs')
parser.add_argument('--cuda', action='store_true',
help='CUDA flag')
parser.add_argument('--seed', default=None, type=int, metavar='N',
help='Seed for initializing training (default: None)')
parser.add_argument('--env_seed', default=42, type=int, metavar='N',
help='Base seed for environments (default: 42)')
def main():
writer = None
log_dir = None
time_stamp = datetime.now().strftime('%b%d_%H-%M-%S')
with open('version.txt') as f:
version = f.readline()
args = parser.parse_args()
args.num_env_steps = int(args.num_env_steps)
args.use_rms_prop = True if args.use_rms_prop else False
args.resample_cards = True if args.resample_cards else False
args.decay_lr_linearly = True if args.decay_lr_linearly else False
args.use_smooth_l1_loss = True if args.use_smooth_l1_loss else False
args.normalize_advantage = True if args.normalize_advantage else False
args.max_grad_norm = args.max_grad_norm if args.max_grad_norm > 0 else None
args.evaluate = True if args.evaluate else False
args.logging = True if args.logging else False
args.cuda = True if args.cuda else False
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. This will turn on the CUDNN deterministic setting, which can '
'slow down your training considerably! You may see unexpected behavior when restarting from '
'checkpoints.')
if torch.cuda.is_available() and args.cuda:
args.cuda = True
else:
args.cuda = False
print('Using CPU ...')
device = torch.device("cuda" if args.cuda else "cpu")
# Environments
envs = make_vec_envs(Concentration(num_cells=args.num_cells,
card_shape=args.card_shape,
match_reward=args.match_reward,
flip_penalty=args.flip_penalty,
resample_cards=args.resample_cards),
args.num_envs, args.env_seed, device)
# Actor-Critic
actor_critic = Policy(
action_space=envs.action_space,
net=ReinforcementLearningReLU(input_size=envs.observation_space.shape[0],
embedding_size=args.embedding_size,
memory_size=args.memory_size,
plasticity_rule=InvertedOjaWithSoftUpperBound(w_max=args.w_max,
gamma_pos=args.gamma_pos,
gamma_neg=args.gamma_neg))
).to(device)
# Agent
agent = PPO(actor_critic=actor_critic,
value_coefficient=args.value_coefficient,
entropy_coefficient=args.entropy_coefficient,
max_grad_norm=args.max_grad_norm,
learning_rate=args.learning_rate,
ppo_clip_param=args.ppo_clip_param,
ppo_batches=args.ppo_batches,
ppo_epochs=args.ppo_epochs,
adam_eps=args.adam_eps)
# Rollout storage
rollouts = RolloutStorage(num_steps=args.num_steps,
num_environments=args.num_envs,
observations_size=envs.observation_space.shape,
action_space=envs.action_space,
recurrent_state_size=actor_critic.state_size)
# Optionally load from checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = utils.checkpoint.load_checkpoint(args.resume, device)
args.start_update = checkpoint['update']
log_dir = checkpoint['log_dir']
time_stamp = checkpoint['time_stamp']
ignore_keys = ['num_env_steps', 'start_update', 'resume', 'cuda', 'evaluate', 'logging']
if args.evaluate:
ignore_keys += ['num_envs', 'env_seed']
for key, val in vars(checkpoint['params']).items():
if key not in ignore_keys:
if vars(args)[key] != val:
print("=> You tried to restart training of a model that was trained with different parameters "
"as you requested now. Aborting...")
sys.exit()
actor_critic.load_state_dict(checkpoint['state_dict'])
agent.optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['update']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
suffix = f'num_envs{args.num_envs}-num_cells{args.num_cells}'
# Summary writer
if log_dir and args.logging and not args.evaluate:
# Use the directory that is stored in checkpoint if we resume training
writer = SummaryWriter(log_dir=log_dir)
elif args.logging and not args.evaluate:
log_dir = os.path.join('results', 'runs', time_stamp + '_' + socket.gethostname() +
f'_version-{version}-{suffix}_reinforcement-learning-task_relu')
writer = SummaryWriter(log_dir=log_dir)
def pretty_json(hp):
json_hp = json.dumps(hp, indent=2, sort_keys=False)
return "".join('\t' + line for line in json_hp.splitlines(True))
writer.add_text('Info/params', pretty_json(vars(args)))
if args.evaluate:
evaluate(actor_critic, args, device)
else:
train(actor_critic, agent, envs, rollouts, args, writer, time_stamp, version, suffix, device)
def train(actor_critic: torch.nn.Module, agent: callable, envs: PyTorchVecEnv, rollouts: RolloutStorage,
args: argparse.Namespace, writer: Union[None, SummaryWriter], time_stamp: str, version: str, suffix: str,
device: Union[str, torch.device]):
actor_critic.train()
observation = envs.reset()
rollouts.observations[0].copy_(observation)
rollouts.to(device)
steps_until_done = collections.deque(maxlen=30)
num_updates = int(args.num_env_steps) // args.num_steps // args.num_envs
progress = tqdm(range(args.start_update, num_updates))
num_games = 0
min_mean_steps = np.inf
for update in progress:
current_lr = adjust_learning_rate(agent.optimizer, update, num_updates, args)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_states = actor_critic.get_action(
inputs=rollouts.observations[step],
states=[state[step] for state in rollouts.recurrent_states],
mask=rollouts.masks[step])
# Observe reward and next obs
observation, reward, done, infos = envs.step(action)
for info, done_ in zip(infos, done):
if done_:
steps_until_done.append(info['num_steps'])
num_games += np.sum([1 if done_ else 0 for done_ in done])
# If done then clean the history of observations.
mask = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
bad_mask = torch.FloatTensor([[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos])
rollouts.insert(observation=observation,
action_log_prob=action_log_prob,
action=action,
value=value,
reward=reward,
mask=mask,
bad_mask=bad_mask,
recurrent_states=recurrent_states)
with torch.no_grad():
next_value = actor_critic.get_value(
inputs=rollouts.observations[-1],
states=[state[-1] for state in rollouts.recurrent_states],
mask=rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.discount_factor, False)
loss, value_loss, policy_loss, entropy, var_explained = agent.update(rollouts)
rollouts.after_update()
mean_steps = np.mean(steps_until_done) if steps_until_done else np.nan
min_steps = np.min(steps_until_done) if steps_until_done else np.nan
max_steps = np.max(steps_until_done) if steps_until_done else np.nan
is_best = mean_steps < min_mean_steps
min_mean_steps = min(mean_steps, min_mean_steps)
# Save checkpoint
save_checkpoint(update, actor_critic.state_dict(), agent.optimizer.state_dict(), args, list(steps_until_done),
writer, time_stamp, version, suffix, is_best)
progress.set_description(f'Update {update + 1}/{num_updates} | '
f'Total steps: {(update + 1) * args.num_envs * args.num_steps} | '
f'Loss: {loss:.4f} | '
f'V-loss: {value_loss:.4f} | '
f'P-loss: {policy_loss:.4f} | '
f'Entropy: {policy_loss:.4f} | '
f'Steps mean (min,max) {mean_steps:.2f} ({min_steps},{max_steps}) ')
if writer is not None:
writer.add_scalar('Loss/a2c', loss, update)
writer.add_scalar('Loss/value', args.value_coefficient * value_loss, update)
writer.add_scalar('Loss/policy', policy_loss, update)
writer.add_scalar('Loss/entropy', args.entropy_coefficient * entropy, update)
writer.add_scalar("Info/steps", mean_steps, update)
writer.add_scalar("Info/games", num_games, update)
writer.add_scalar("Info/steps4", steps_until_done.count(4), update)
writer.add_scalar("Info/steps6", steps_until_done.count(6), update)
writer.add_scalar("Info/steps8", steps_until_done.count(8), update)
writer.add_scalar("Info/steps10", steps_until_done.count(10), update)
if update == 0:
writer.add_custom_scalars_multilinechart(["Info/steps4", "Info/steps6", "Info/steps8", "Info/steps10"])
writer.add_scalar("Info/mean_returns", rollouts.returns.mean().item(), update)
writer.add_scalar("Info/variance_explained", var_explained, update)
writer.add_scalar("Info/learning_rate", current_lr, update)
envs.close()
def evaluate(actor_critic: torch.nn.Module, args: argparse.Namespace, device: Union[str, torch.device],
deterministic: Optional[bool] = True, min_num_games_to_finish: Optional[int] = 1000,
max_steps: Optional[int] = 10000) -> None:
envs = make_vec_envs(Concentration(num_cells=args.num_cells,
card_shape=args.card_shape,
match_reward=args.match_reward,
flip_penalty=args.flip_penalty,
resample_cards=args.resample_cards),
args.num_envs, args.env_seed + 1, device)
observations = envs.reset()
recurrent_states = [torch.zeros(args.num_envs, *size, device=device) for size in actor_critic.state_size]
mask = torch.zeros(args.num_envs, 1, device=device)
actor_critic.eval()
step = 0
steps_until_done = []
while len(steps_until_done) < min_num_games_to_finish and step < max_steps:
with torch.no_grad():
_, action, _, recurrent_states, _ = actor_critic.get_action(
inputs=observations,
states=recurrent_states,
mask=mask,
deterministic=deterministic)
# Observe reward and next obs
observations, _, done, infos = envs.step(action)
for info, done_ in zip(infos, done):
if done_:
steps_until_done.append(info['num_steps'])
mask = torch.tensor([[0.0] if done_ else [1.0] for done_ in done], dtype=torch.float32, device=device)
step += 1
envs.close()
if steps_until_done:
steps, counts = np.unique(steps_until_done, return_counts=True)
print("\nEvaluation using {} episodes: Mean steps {:.2f} (min steps {}, max steps {})\n"
"Steps: {}, Counts: {}".format(len(steps_until_done), np.mean(steps_until_done), np.min(steps_until_done),
np.max(steps_until_done), steps, counts))
else:
print("\nEvaluation did not finish within {} steps".format(max_steps))
def adjust_learning_rate(optimizer: torch.optim.Optimizer, update: int, total_updates: int,
args: argparse.Namespace) -> float:
if args.decay_lr_linearly:
"""Decreases the learning rate linearly"""
lr = args.learning_rate - (args.learning_rate * (update / float(total_updates)))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
"""Sets the learning rate to the initial LR decayed by X% every N epochs"""
lr = args.learning_rate * (args.learning_rate_decay ** (update // args.decay_learning_rate_every))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def save_checkpoint(update: int, actor_critic_state_dict: dict, optimizer_state_dict: dict, args: argparse.Namespace,
steps_until_done: List[int], writer: Union[None, SummaryWriter], time_stamp: str, version: str,
suffix: str, is_best: bool) -> None:
utils.checkpoint.save_checkpoint({
'params': args,
'update': update,
'steps_until_done': steps_until_done,
'state_dict': actor_critic_state_dict,
'optimizer': optimizer_state_dict,
'time_stamp': time_stamp,
'log_dir': writer.get_logdir() if writer is not None else '',
}, is_best, filename=os.path.join(
'results', 'checkpoints', time_stamp +
'_' + socket.gethostname() + f'_version-{version}-{suffix}_reinforcement-learning-task_relu'))
if __name__ == '__main__':
main()