forked from april-tools/e4selflearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegment.py
484 lines (449 loc) · 18.6 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
import datetime
import math
import pickle
import typing as t
import warnings
from functools import partial
from shutil import rmtree
import biosppy
import flirt
import pandas as pd
from tqdm.contrib import concurrent
from timebase.data import filter_data
from timebase.data.static import *
from timebase.utils import h5
from timebase.utils.utils import set_random_seed
from timebase.utils.utils import update_dict
def extract_features(
args,
features: t.Dict,
segments_unix_t0: np.array,
ibi: np.ndarray,
recording_unix_t0: t.Dict,
):
if not np.isnan(ibi).any():
timestamps_beats = pd.to_datetime(
ibi[:, 0] + recording_unix_t0["IBI"], unit="s", origin="unix"
)
features_container = []
warnings.filterwarnings(action="ignore", category=UserWarning)
for i in range(len(segments_unix_t0)):
# EDA
eda = pd.DataFrame(
data=features["EDA"][i],
columns=["eda"],
dtype=np.float64,
)
eda_timestamps = pd.to_datetime(
segments_unix_t0[i], unit="s", origin="unix"
) + np.arange(len(eda)) * datetime.timedelta(seconds=CHANNELS_FREQ["EDA"] ** -1)
eda = eda.set_index(pd.DatetimeIndex(data=eda_timestamps, name="datetime"))
try:
eda_features = flirt.eda.get_eda_features(
data=eda["eda"],
data_frequency=CHANNELS_FREQ["EDA"],
window_length=args.segment_length,
window_step_size=args.segment_length,
)
if not eda_features.shape[-1] == len(FLIRT_EDA):
eda_features = np.empty(shape=[1, len(FLIRT_HRV)])
eda_features.fill(np.nan)
eda_features = pd.DataFrame(data=eda_features, columns=FLIRT_EDA)
except:
eda_features = np.empty(shape=[1, len(FLIRT_HRV)])
eda_features.fill(np.nan)
eda_features = pd.DataFrame(data=eda_features, columns=FLIRT_EDA)
# ACC
acc = pd.DataFrame(
data=np.concatenate(
[
np.expand_dims(axis, axis=1)
for axis in [
features["ACC_x"][i],
features["ACC_y"][i],
features["ACC_z"][i],
]
],
axis=1,
),
columns=["acc_x", "acc_y", "acc_z"],
dtype=np.float64,
)
# reverse transformation to g values
acc = (acc * 128) / 2
acc_timestamps = pd.to_datetime(
segments_unix_t0[i], unit="s", origin="unix"
) + np.arange(len(acc)) * datetime.timedelta(
seconds=CHANNELS_FREQ["ACC_x"] ** -1
)
acc = acc.set_index(pd.DatetimeIndex(data=acc_timestamps, name="datetime"))
try:
acc_features = flirt.acc.get_acc_features(
data=acc,
data_frequency=CHANNELS_FREQ["ACC_x"],
window_length=args.segment_length,
window_step_size=args.segment_length,
)
if not acc_features.shape[-1] == len(FLIRT_ACC):
acc_features = np.empty(shape=[1, len(FLIRT_ACC)])
acc_features.fill(np.nan)
acc_features = pd.DataFrame(data=acc_features, columns=FLIRT_ACC)
except:
acc_features = np.empty(shape=[1, len(FLIRT_ACC)])
acc_features.fill(np.nan)
acc_features = pd.DataFrame(data=acc_features, columns=FLIRT_ACC)
# HRV
if (args.from_bvp2ibi_mode == 0) and (not np.isnan(ibi).any()):
segment_start = datetime.datetime.fromtimestamp(segments_unix_t0[i])
segment_end = segment_start + datetime.timedelta(
seconds=args.segment_length
)
ibi_segment = timestamps_beats[
(timestamps_beats >= segment_start) & (timestamps_beats <= segment_end)
]
ibi = np.around(np.diff(ibi_segment).astype(np.int64) / 10**6, decimals=3)
df_ibi = pd.DataFrame(data=ibi, columns=["ibi"]).set_index(
pd.DatetimeIndex(data=ibi_segment[1:], tz="UTC", name="datetime")
)
else:
# Signal time axis reference (seconds):
# https://biosppy.readthedocs.io/en/stable/biosppy.signals.html#biosppy-signals-bvp
ts, filtered, onsets, heart_rate_ts, heart_rate = biosppy.signals.bvp.bvp(
signal=features["BVP"][i],
sampling_rate=CHANNELS_FREQ["BVP"],
show=False,
)
# interpulse interval, pulse rate variability:
# https://www.kubios.com/hrv-time-series/
ipi = np.diff(ts[onsets]) * 1000
ipi_timestamps = pd.to_datetime(
segments_unix_t0[i], unit="s", origin="unix"
) + np.array([datetime.timedelta(milliseconds=ms) for ms in ipi])
df_ibi = pd.DataFrame(data=ipi, columns=["ibi"])
df_ibi = df_ibi.set_index(
pd.DatetimeIndex(data=ipi_timestamps, name="datetime")
)
try:
hrv_features = flirt.hrv.get_hrv_features(
data=df_ibi["ibi"],
window_length=args.segment_length,
window_step_size=args.segment_length,
domains=["td", "fd", "nl", "stat"],
)
if not hrv_features.shape[-1] == len(FLIRT_HRV):
hrv_features = np.empty(shape=[1, len(FLIRT_HRV)])
hrv_features.fill(np.nan)
hrv_features = pd.DataFrame(data=hrv_features, columns=FLIRT_HRV)
except:
hrv_features = np.empty(shape=[1, len(FLIRT_HRV)])
hrv_features.fill(np.nan)
hrv_features = pd.DataFrame(data=hrv_features, columns=FLIRT_HRV)
# TEMP
# FLIRT does not extract any feature for temperature, so we extract
# the temperature average and std across the segment
temp = features["TEMP"][i]
temp_features = np.concatenate(
(np.array(np.mean(temp), ndmin=2), np.array(np.std(temp), ndmin=2)), axis=1
)
temp_features = pd.DataFrame(data=temp_features, columns=FLIRT_TEMP)
features_container.append(
np.concatenate(
(
eda_features.values,
acc_features.values,
hrv_features.values,
temp_features.values,
),
axis=1,
)
)
features["FLIRT"] = np.concatenate(features_container, axis=0)
def segmentation(
args,
recording_path: str,
channel_names: t.List,
channel_freq: t.Dict[str, int],
unix_t0: int,
mask: np.ndarray,
) -> (t.Dict[str, np.ndarray], int):
"""
Segment preprocessed features along the temporal dimension into
N non-overlapping segments where each segment has size args.segment_length
Return:
data: t.Dict[str, np.ndarray]
dictionary of np.ndarray, where the keys are the channels
and each np.ndarray are in shape (num. segment, window size)
size: int, number of extracted segments
"""
assert (segment_length := args.segment_length) > 0
if args.segmentation_mode == 1:
assert segment_length % (step_size := args.step_size) == 0
channels = [channel for channel in channel_names if channel != "IBI"]
session_data = {k: h5.get(recording_path, k) for k in channels}
channel_segments = {c: [] for c in channels}
channel_segments["unix_t0"] = []
# segment each channel using a sliding window that space out equally
for i, channel in enumerate(channels):
window_samples = segment_length * channel_freq[channel]
recording = session_data[channel] * np.repeat(
mask, repeats=channel_freq[channel]
)
# list of sub-arrays from recording array with no nan values
sub_recs = [
recording[s] for s in np.ma.clump_unmasked(np.ma.masked_invalid(recording))
]
if i == 0:
timestamps = unix_t0 + np.arange(len(recording)) * (
datetime.timedelta(seconds=channel_freq[channel] ** -1).microseconds
/ 1e6
)
sub_timestamps = [
timestamps[s]
for s in np.ma.clump_unmasked(np.ma.masked_invalid(recording))
]
# segment sub-recordings independently of each other
for sub_i, sub_rec in enumerate(sub_recs):
# not-overlapping segments
if args.segmentation_mode == 0:
num_segments = math.floor(len(sub_rec) / window_samples)
if num_segments:
indexes = np.linspace(
start=0,
stop=len(sub_rec) - window_samples,
num=num_segments,
dtype=int,
)
channel_segments[channel].extend(
[sub_rec[idx : idx + window_samples, ...] for idx in indexes]
)
if i == 0:
channel_segments["unix_t0"].extend(
[sub_timestamps[sub_i][idx, ...] for idx in indexes]
)
# sliding window
else:
step_samples = step_size * channel_freq[channel]
# calculate the total number of windows in sub-recording
num_windows = (len(sub_rec) - window_samples) // step_samples + 1
if num_windows:
for idx in range(num_windows):
start_idx = idx * step_samples
end_idx = start_idx + window_samples
channel_segments[channel].append(sub_rec[start_idx:end_idx])
if i == 0:
for idx in range(num_windows):
start_idx = idx * step_samples
channel_segments["unix_t0"].append(
sub_timestamps[sub_i][start_idx, ...]
)
num_channel_segments = [len(s) for s in channel_segments.values()]
assert (
len(set(num_channel_segments)) == 1
), "all channels must have equal length after segmentation"
data = {c: np.asarray(r) for c, r in channel_segments.items()}
return data, num_channel_segments[0]
def process_recording(args, metadata: t.Dict, session_id: str):
recording_path = os.path.join(args.data_dir, session_id, "channels.h5")
session_label = h5.get(recording_path, "labels")
# wake = 0, sleep = 1, can't tell = 2
sleep_wake_mask = h5.get(recording_path, "SLEEP")
sleep_wake = {"wake": 0, "sleep": 1}
features, sleep_status = {}, []
for k, v in sleep_wake.items():
mask = np.where(sleep_wake_mask != v, np.nan, 1)
# resample mask so that each mask entry maps to a wall-time second
mask = np.reshape(
mask,
newshape=(
-1,
metadata["sessions_info"][session_id]["sampling_rates"]["SLEEP"],
),
order="C",
)
mask = np.where(np.isnan(np.sum(mask, axis=1)), np.nan, 1)
session_data, num_segments = segmentation(
args,
recording_path=recording_path,
channel_names=metadata["sessions_info"][session_id]["channel_names"],
channel_freq=metadata["sessions_info"][session_id]["sampling_rates"],
unix_t0=metadata["sessions_info"][session_id]["unix_t0"]["HR"],
mask=mask,
)
if num_segments:
update_dict(target=features, source=session_data)
sleep_status.extend([v] * num_segments)
if not len(sleep_status):
if args.verbose == 1:
print(f"Session {session_id} gave no segments.")
return None
session_output_dir = os.path.join(args.output_dir, str(session_id))
if not os.path.isdir(session_output_dir):
os.makedirs(session_output_dir)
wake_sleep_off = {}
for k, v in SLEEP_DICT.items():
# sleep_wake_mask sampled at 32Hz (ACC sampling frequency)
secs_in_status = (
len(np.where(sleep_wake_mask == k)[0]) // CHANNELS_FREQ["ACC_x"]
)
wake_sleep_off[v] = secs_in_status
features = {k: np.concatenate(v, axis=0) for k, v in features.items()}
segments_unix_t0 = features["unix_t0"]
del features["unix_t0"]
if args.flirt:
if not np.isnan(session_label).any():
extract_features(
args,
features=features,
segments_unix_t0=segments_unix_t0,
ibi=h5.get(recording_path, "IBI"),
recording_unix_t0=metadata["sessions_info"][str(session_id)]["unix_t0"],
)
session_paths = []
for n in range(len(sleep_status)):
filename = os.path.join(session_output_dir, f"{n}.h5")
segment = {k: v[n] for k, v in features.items()}
h5.write(filename=filename, content=segment, overwrite=True)
session_paths.append(filename)
session_paths = np.array(session_paths, dtype=str)
session_labels = np.tile(session_label, reps=(len(sleep_status), 1))
return {
"paths": session_paths,
"labels": session_labels,
"segments_unix_t0": segments_unix_t0,
"sleep_status": sleep_status,
"wake_sleep_off": wake_sleep_off,
}
def segmentation_wrapper(args, metadata, session_id):
results = process_recording(args, metadata, session_id)
return results
def main(args):
if not os.path.isdir(args.data_dir):
raise FileNotFoundError(f"data_dir {args.data_dir} not found.")
if os.path.isdir(args.output_dir):
if args.overwrite:
rmtree(args.output_dir)
else:
raise FileExistsError(
f"output_dir {args.output_dir} already exists. Add --overwrite "
f" flag to overwrite the existing preprocessed data."
)
os.makedirs(args.output_dir)
set_random_seed(args.seed)
filename = os.path.join(args.data_dir, "metadata.pkl")
if not os.path.exists(filename):
raise FileNotFoundError(f"data_dir {filename} not found.")
metadata = pickle.load(open(filename, "rb"))
(
sessions_paths,
sessions_labels,
sessions_sleep_status,
sessions_segments_unix_t0,
) = ([], [], [], [])
metadata["ds_info"] = {"segment_length": args.segment_length}
metadata["ds_info"]["wake_sleep_off"] = {}
if args.segmentation_mode:
metadata["ds_info"]["step_size"] = args.step_size
metadata["ds_info"]["invalid_sessions_upon_segmentation"] = []
results = concurrent.process_map(
partial(segmentation_wrapper, args, metadata),
metadata["sessions_info"].keys(),
max_workers=args.num_workers,
chunksize=args.chunksize,
desc="Segmenting",
)
for i, session_id in enumerate(metadata["sessions_info"].keys()):
result = results[i]
# result = process_recording(args, metadata=metadata, session_id=str(session_id))
if result is None:
metadata["ds_info"]["invalid_sessions_upon_segmentation"].append(session_id)
continue
sessions_paths.append(result["paths"])
sessions_labels.append(result["labels"])
sessions_sleep_status.append(result["sleep_status"])
sessions_segments_unix_t0.append(result["segments_unix_t0"])
metadata["ds_info"]["wake_sleep_off"][session_id] = result["wake_sleep_off"]
# joint metadata from all sessions
metadata["sessions_paths"] = np.concatenate(sessions_paths, axis=0)
metadata["sessions_labels"] = np.concatenate(sessions_labels, axis=0)
metadata["sessions_labels"] = {
k: metadata["sessions_labels"][:, i] for i, k in enumerate(LABEL_COLS)
}
# 1) some recording IDs collected in Barcelona are split across multiple
# sessions -> assign the same recording ID throughout
# 2) some subjects from unlabelled_data have multiple recordings,
# we assume that the underlying semantics with respect to psychiatric
# phenotypes do not change -> assign the same recording ID throughout
metadata["recording_id"] = filter_data.set_unique_recording_id(args, metadata)
metadata["sessions_sleep_status"] = np.concatenate(sessions_sleep_status, axis=0)
metadata["sessions_segments_unix_t0"] = np.concatenate(
sessions_segments_unix_t0, axis=0
)
with open(os.path.join(args.output_dir, "metadata.pkl"), "wb") as file:
pickle.dump(metadata, file)
print(f"Saved segmented data to {args.output_dir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir",
type=str,
default="data/preprocessed/unsegmented",
help="path to directory with raw data in zip files",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="path to directory to store dataset",
)
parser.add_argument(
"--overwrite",
action="store_true",
help="overwrite existing preprocessed directory",
)
parser.add_argument("--verbose", type=int, default=1, choices=[0, 1])
parser.add_argument("--seed", type=int, default=1234)
# segmentation configuration
parser.add_argument(
"--segmentation_mode",
type=int,
default=0,
choices=[0, 1],
help="control which plots are printed"
"0) Given a segment length, non-overlapping segments are extracted"
"1) Given a segment length and a step-size, a sliding window is used "
"to perform segmentation",
)
parser.add_argument(
"--segment_length",
type=int,
default=2**9,
help="segmentation window length in seconds",
)
temp_args = parser.parse_known_args()[0]
if temp_args.segmentation_mode == 1:
parser.add_argument(
"--step_size",
type=int,
default=2**6,
help="segmentation window length in seconds",
)
del temp_args
parser.add_argument(
"--flirt",
action="store_true",
help="extract features with FLIRT on labelled sessions only",
)
parser.add_argument(
"--from_bvp2ibi_mode",
type=int,
default=0,
choices=[0, 1],
help=""
"0) Use Empatica IBI (provided as part of the E4 output and "
"derived through a propriety algorithm. "
"1) Compute IBI from BVP with bioppsy open-source package",
)
parser.add_argument("--num_workers", type=int, default=6)
parser.add_argument("--chunksize", type=int, default=1)
main(parser.parse_args())