Skip to content

Latest commit

 

History

History
55 lines (47 loc) · 2.09 KB

README.md

File metadata and controls

55 lines (47 loc) · 2.09 KB

NCF: Neural Collaborative Filtering(WWW, 2017)

Dataset

I used MovieLens dataset(file size: 100K). If there is interaction between user and item, then target value will be 1. so if there is rating value between user and movie, then target value is 1, otherwise 0. for negative sampling, ratio between positive feedback and negative feedback is 1:4 in trainset, and 1:99 in testset. (these ratios are same as author's code @hexiangnan)

Neural Collaborative Filtering model directory tree

.
├── README.md
├── main.py
├── data_utils.py
├── GMF.py
├── MLP.py
├── NeuMF.py
├── evaluate.py
└── dataset
    ├── ml-latest-small
    │   └── ratings.csv
    └── ml-latest-small.zip

Neural Collaborative Filtering Result

MovieLens 100K HR NDCG Runtime epoch learning rate batchsize predictive factor the number of layer
GMF 0.825 0.554 2m 20 0.001 256 8 X
MLP 0.825 0.559 2.8m 20 0.001 256 8 3
NeuMF(without pre-training) 0.848 0.578 3m 20 0.001 256 8 3
NeuMF(with pre-training) 0.875 0.577 2.6m 20 0.001 256 8 X

Development Enviroment

  • OS: Max OS X
  • IDE: pycharm
  • GPU: NVIDIA RTX A6000

Quick Start Example

python main.py -m GMF -nf 8 -b 256 -e 20 -lr 0.001 -tk 10 -pr False -save True
python main.py -m MLP -nf 8 -nl 3 -b 256 -e 20 -lr 0.001 -tk 10 -pr False -save True
python main.py -m NeuMF -nf 8 -nl 3 -b 256 -e 20 -lr 0.001 -tk 10 -pr False
python main.py -m NeuMF -nf 8 -nl 3 -b 256 -e 20 -lr 0.001 -tk 10 -pr True

Reference

paper : Neural Collaborative Filtering

review written in korean : Review

Neural Collaborative Filtering with MovieLens in torch

In progress 'with pre-training'