diff --git a/articles/additional.html b/articles/additional.html index d76c72c35..8c922906f 100644 --- a/articles/additional.html +++ b/articles/additional.html @@ -140,7 +140,7 @@

PublicationPresentation

In addition to these vignettes, another quick way to get an overview -of this package is to go through the following slides: https://indrajeetpatil.github.io/ggstatsplot_slides/slides/ggstatsplot_presentation.html#1

+of this package is to go through the following slides: https://indrajeetpatil.github.io/intro-to-ggstatsplot/#/ggstatsplot-informative-statistical-visualizations

Statistical backend of {ggstatsplot} diff --git a/articles/web_only/faq.html b/articles/web_only/faq.html index 935fe8ab8..ccea28367 100644 --- a/articles/web_only/faq.html +++ b/articles/web_only/faq.html @@ -711,22 +711,22 @@

22. How can I b library(shiny) library(rlang) -ui <- fluidPage( - headerPanel("Example - ggbetweenstats"), - sidebarPanel( - selectInput("x", "xcol", "X Variable", choices = names(iris)[5]), - selectInput("y", "ycol", "Y Variable", choices = names(iris)[1:4]) +ui <- fluidPage( + headerPanel("Example - ggbetweenstats"), + sidebarPanel( + selectInput("x", "xcol", "X Variable", choices = names(iris)[5]), + selectInput("y", "ycol", "Y Variable", choices = names(iris)[1:4]) ), - mainPanel(plotOutput("plot")) + mainPanel(plotOutput("plot")) ) server <- function(input, output) { - output$plot <- renderPlot({ + output$plot <- renderPlot({ ggbetweenstats(iris, !!input$x, !!input$y) }) } -shinyApp(ui, server)

+shinyApp(ui, server)

23. How to change size of annotations for combined plot in diff --git a/index.html b/index.html index 8f17f1036..a7940520d 100644 --- a/index.html +++ b/index.html @@ -131,26 +131,18 @@

Raison d’être Installation

----- - - - + + - - - + + - - - + +
TypeSourceCommandTypeCommand
ReleaseCRAN Statusinstall.packages("ggstatsplot")Releaseinstall.packages("ggstatsplot")
DevelopmentProject Statuspak::pak("IndrajeetPatil/ggstatsplot")Developmentpak::pak("IndrajeetPatil/ggstatsplot")
@@ -194,8 +186,8 @@

Documentation and ExamplesTo see the detailed documentation for each function in the stable CRAN version of the package, see:

diff --git a/news/index.html b/news/index.html index c9dee276f..86d62846a 100644 --- a/news/index.html +++ b/news/index.html @@ -62,6 +62,10 @@

ggstatsplot 0.12.5.9000

N.B. All statistical analysis in ggstatsplot is carried out in statsExpressions. Thus, to see changes related to statistical expressions, read the NEWS for that package: https://indrajeetpatil.github.io/statsExpressions/news/index.html

+
+

BREAKING CHANGES

+
  • The minimum needed R version is now bumped to R 4.3.
  • +

ggstatsplot 0.12.5

CRAN release: 2024-11-01

diff --git a/pkgdown.yml b/pkgdown.yml index 09d5e3ced..d1904f052 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -1,6 +1,6 @@ pandoc: '3.5' pkgdown: 2.1.1.9000 -pkgdown_sha: ffe60d5f60934e95285d416dae12c05e24ed1dac +pkgdown_sha: c40ba2c989e786bbb2829b431114d26375bbe19a articles: additional: additional.html web_only/faq: web_only/faq.html @@ -17,7 +17,7 @@ articles: web_only/pairwise: web_only/pairwise.html web_only/principles: web_only/principles.html web_only/purrr_examples: web_only/purrr_examples.html -last_built: 2024-11-01T09:31Z +last_built: 2024-11-10T21:11Z urls: reference: https://indrajeetpatil.github.io/ggstatsplot/reference article: https://indrajeetpatil.github.io/ggstatsplot/articles diff --git a/search.json b/search.json index 4eaec0b05..03975414b 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement patilindrajeet.science@gmail.com. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired [Mozilla’s code conduct enforcement ladder][https://github.com/mozilla/inclusion]. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to ggstatsplot","title":"Contributing to ggstatsplot","text":"outlines propose change ggstatsplot. detailed info contributing , tidyverse packages, please see development contributing guide.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to ggstatsplot","text":"Small typos grammatical errors documentation may edited directly using GitHub web interface, long changes made source file. YES: edit roxygen comment .R file R/. : edit .Rd file man/.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"prerequisites","dir":"","previous_headings":"","what":"Prerequisites","title":"Contributing to ggstatsplot","text":"make substantial pull request, always file issue make sure someone team agrees ’s problem. ’ve found bug, create associated issue illustrate bug minimal reprex.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"","what":"Pull request process","title":"Contributing to ggstatsplot","text":"recommend create Git branch pull request (PR). Look Travis AppVeyor build status making changes. README contain badges continuous integration services used package. New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat. Contributions test cases included easier accept. user-facing changes, add bullet top NEWS.md current development version header describing changes made followed GitHub username, links relevant issue(s)/PR(s).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to ggstatsplot","text":"Please note ggstatsplot project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"see-tidyverse-development-contributing-guide","dir":"","previous_headings":"","what":"See tidyverse development contributing guide","title":"Contributing to ggstatsplot","text":"details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"GNU General Public License","title":"GNU General Public License","text":"Version 3, 29 June 2007Copyright © 2007 Free Software Foundation, Inc.  Everyone permitted copy distribute verbatim copies license document, changing allowed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"preamble","dir":"","previous_headings":"","what":"Preamble","title":"GNU General Public License","text":"GNU General Public License free, copyleft license software kinds works. licenses software practical works designed take away freedom share change works. contrast, GNU General Public License intended guarantee freedom share change versions program–make sure remains free software users. , Free Software Foundation, use GNU General Public License software; applies also work released way authors. can apply programs, . speak free software, referring freedom, price. General Public Licenses designed make sure freedom distribute copies free software (charge wish), receive source code can get want , can change software use pieces new free programs, know can things. protect rights, need prevent others denying rights asking surrender rights. Therefore, certain responsibilities distribute copies software, modify : responsibilities respect freedom others. example, distribute copies program, whether gratis fee, must pass recipients freedoms received. must make sure , , receive can get source code. must show terms know rights. Developers use GNU GPL protect rights two steps: (1) assert copyright software, (2) offer License giving legal permission copy, distribute /modify . developers’ authors’ protection, GPL clearly explains warranty free software. users’ authors’ sake, GPL requires modified versions marked changed, problems attributed erroneously authors previous versions. devices designed deny users access install run modified versions software inside , although manufacturer can . fundamentally incompatible aim protecting users’ freedom change software. systematic pattern abuse occurs area products individuals use, precisely unacceptable. Therefore, designed version GPL prohibit practice products. problems arise substantially domains, stand ready extend provision domains future versions GPL, needed protect freedom users. Finally, every program threatened constantly software patents. States allow patents restrict development use software general-purpose computers, , wish avoid special danger patents applied free program make effectively proprietary. prevent , GPL assures patents used render program non-free. precise terms conditions copying, distribution modification follow.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_0-definitions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"0. Definitions","title":"GNU General Public License","text":"License refers version 3 GNU General Public License. Copyright also means copyright-like laws apply kinds works, semiconductor masks. Program refers copyrightable work licensed License. licensee addressed . Licensees recipients may individuals organizations. modify work means copy adapt part work fashion requiring copyright permission, making exact copy. resulting work called modified version earlier work work based  earlier work. covered work means either unmodified Program work based Program. propagate work means anything , without permission, make directly secondarily liable infringement applicable copyright law, except executing computer modifying private copy. Propagation includes copying, distribution (without modification), making available public, countries activities well. convey work means kind propagation enables parties make receive copies. Mere interaction user computer network, transfer copy, conveying. interactive user interface displays Appropriate Legal Notices extent includes convenient prominently visible feature (1) displays appropriate copyright notice, (2) tells user warranty work (except extent warranties provided), licensees may convey work License, view copy License. interface presents list user commands options, menu, prominent item list meets criterion.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_1-source-code","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"1. Source Code","title":"GNU General Public License","text":"source code work means preferred form work making modifications . Object code means non-source form work. Standard Interface means interface either official standard defined recognized standards body, , case interfaces specified particular programming language, one widely used among developers working language. System Libraries executable work include anything, work whole, () included normal form packaging Major Component, part Major Component, (b) serves enable use work Major Component, implement Standard Interface implementation available public source code form. Major Component, context, means major essential component (kernel, window system, ) specific operating system () executable work runs, compiler used produce work, object code interpreter used run . Corresponding Source work object code form means source code needed generate, install, (executable work) run object code modify work, including scripts control activities. However, include work’s System Libraries, general-purpose tools generally available free programs used unmodified performing activities part work. example, Corresponding Source includes interface definition files associated source files work, source code shared libraries dynamically linked subprograms work specifically designed require, intimate data communication control flow subprograms parts work. Corresponding Source need include anything users can regenerate automatically parts Corresponding Source. Corresponding Source work source code form work.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_2-basic-permissions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"2. Basic Permissions","title":"GNU General Public License","text":"rights granted License granted term copyright Program, irrevocable provided stated conditions met. License explicitly affirms unlimited permission run unmodified Program. output running covered work covered License output, given content, constitutes covered work. License acknowledges rights fair use equivalent, provided copyright law. may make, run propagate covered works convey, without conditions long license otherwise remains force. may convey covered works others sole purpose make modifications exclusively , provide facilities running works, provided comply terms License conveying material control copyright. thus making running covered works must exclusively behalf, direction control, terms prohibit making copies copyrighted material outside relationship . Conveying circumstances permitted solely conditions stated . Sublicensing allowed; section 10 makes unnecessary.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_3-protecting-users-legal-rights-from-anti-circumvention-law","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"3. Protecting Users’ Legal Rights From Anti-Circumvention Law","title":"GNU General Public License","text":"covered work shall deemed part effective technological measure applicable law fulfilling obligations article 11 WIPO copyright treaty adopted 20 December 1996, similar laws prohibiting restricting circumvention measures. convey covered work, waive legal power forbid circumvention technological measures extent circumvention effected exercising rights License respect covered work, disclaim intention limit operation modification work means enforcing, work’s users, third parties’ legal rights forbid circumvention technological measures.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_4-conveying-verbatim-copies","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"4. Conveying Verbatim Copies","title":"GNU General Public License","text":"may convey verbatim copies Program’s source code receive , medium, provided conspicuously appropriately publish copy appropriate copyright notice; keep intact notices stating License non-permissive terms added accord section 7 apply code; keep intact notices absence warranty; give recipients copy License along Program. may charge price price copy convey, may offer support warranty protection fee.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_5-conveying-modified-source-versions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"5. Conveying Modified Source Versions","title":"GNU General Public License","text":"may convey work based Program, modifications produce Program, form source code terms section 4, provided also meet conditions: ) work must carry prominent notices stating modified , giving relevant date. b) work must carry prominent notices stating released License conditions added section 7. requirement modifies requirement section 4 keep intact notices. c) must license entire work, whole, License anyone comes possession copy. License therefore apply, along applicable section 7 additional terms, whole work, parts, regardless packaged. License gives permission license work way, invalidate permission separately received . d) work interactive user interfaces, must display Appropriate Legal Notices; however, Program interactive interfaces display Appropriate Legal Notices, work need make . compilation covered work separate independent works, nature extensions covered work, combined form larger program, volume storage distribution medium, called aggregate compilation resulting copyright used limit access legal rights compilation’s users beyond individual works permit. Inclusion covered work aggregate cause License apply parts aggregate.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_6-conveying-non-source-forms","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"6. Conveying Non-Source Forms","title":"GNU General Public License","text":"may convey covered work object code form terms sections 4 5, provided also convey machine-readable Corresponding Source terms License, one ways: ) Convey object code , embodied , physical product (including physical distribution medium), accompanied Corresponding Source fixed durable physical medium customarily used software interchange. b) Convey object code , embodied , physical product (including physical distribution medium), accompanied written offer, valid least three years valid long offer spare parts customer support product model, give anyone possesses object code either (1) copy Corresponding Source software product covered License, durable physical medium customarily used software interchange, price reasonable cost physically performing conveying source, (2) access copy Corresponding Source network server charge. c) Convey individual copies object code copy written offer provide Corresponding Source. alternative allowed occasionally noncommercially, received object code offer, accord subsection 6b. d) Convey object code offering access designated place (gratis charge), offer equivalent access Corresponding Source way place charge. need require recipients copy Corresponding Source along object code. place copy object code network server, Corresponding Source may different server (operated third party) supports equivalent copying facilities, provided maintain clear directions next object code saying find Corresponding Source. Regardless server hosts Corresponding Source, remain obligated ensure available long needed satisfy requirements. e) Convey object code using peer--peer transmission, provided inform peers object code Corresponding Source work offered general public charge subsection 6d. separable portion object code, whose source code excluded Corresponding Source System Library, need included conveying object code work. User Product either (1) consumer product, means tangible personal property normally used personal, family, household purposes, (2) anything designed sold incorporation dwelling. determining whether product consumer product, doubtful cases shall resolved favor coverage. particular product received particular user, normally used refers typical common use class product, regardless status particular user way particular user actually uses, expects expected use, product. product consumer product regardless whether product substantial commercial, industrial non-consumer uses, unless uses represent significant mode use product. Installation Information User Product means methods, procedures, authorization keys, information required install execute modified versions covered work User Product modified version Corresponding Source. information must suffice ensure continued functioning modified object code case prevented interfered solely modification made. convey object code work section , , specifically use , User Product, conveying occurs part transaction right possession use User Product transferred recipient perpetuity fixed term (regardless transaction characterized), Corresponding Source conveyed section must accompanied Installation Information. requirement apply neither third party retains ability install modified object code User Product (example, work installed ROM). requirement provide Installation Information include requirement continue provide support service, warranty, updates work modified installed recipient, User Product modified installed. Access network may denied modification materially adversely affects operation network violates rules protocols communication across network. Corresponding Source conveyed, Installation Information provided, accord section must format publicly documented (implementation available public source code form), must require special password key unpacking, reading copying.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_7-additional-terms","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"7. Additional Terms","title":"GNU General Public License","text":"Additional permissions terms supplement terms License making exceptions one conditions. Additional permissions applicable entire Program shall treated though included License, extent valid applicable law. additional permissions apply part Program, part may used separately permissions, entire Program remains governed License without regard additional permissions. convey copy covered work, may option remove additional permissions copy, part . (Additional permissions may written require removal certain cases modify work.) may place additional permissions material, added covered work, can give appropriate copyright permission. Notwithstanding provision License, material add covered work, may (authorized copyright holders material) supplement terms License terms: ) Disclaiming warranty limiting liability differently terms sections 15 16 License; b) Requiring preservation specified reasonable legal notices author attributions material Appropriate Legal Notices displayed works containing ; c) Prohibiting misrepresentation origin material, requiring modified versions material marked reasonable ways different original version; d) Limiting use publicity purposes names licensors authors material; e) Declining grant rights trademark law use trade names, trademarks, service marks; f) Requiring indemnification licensors authors material anyone conveys material (modified versions ) contractual assumptions liability recipient, liability contractual assumptions directly impose licensors authors. non-permissive additional terms considered restrictions within meaning section 10. Program received , part , contains notice stating governed License along term restriction, may remove term. license document contains restriction permits relicensing conveying License, may add covered work material governed terms license document, provided restriction survive relicensing conveying. add terms covered work accord section, must place, relevant source files, statement additional terms apply files, notice indicating find applicable terms. Additional terms, permissive non-permissive, may stated form separately written license, stated exceptions; requirements apply either way.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_8-termination","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"8. Termination","title":"GNU General Public License","text":"may propagate modify covered work except expressly provided License. attempt otherwise propagate modify void, automatically terminate rights License (including patent licenses granted third paragraph section 11). However, cease violation License, license particular copyright holder reinstated () provisionally, unless copyright holder explicitly finally terminates license, (b) permanently, copyright holder fails notify violation reasonable means prior 60 days cessation. Moreover, license particular copyright holder reinstated permanently copyright holder notifies violation reasonable means, first time received notice violation License (work) copyright holder, cure violation prior 30 days receipt notice. Termination rights section terminate licenses parties received copies rights License. rights terminated permanently reinstated, qualify receive new licenses material section 10.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_9-acceptance-not-required-for-having-copies","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"9. Acceptance Not Required for Having Copies","title":"GNU General Public License","text":"required accept License order receive run copy Program. Ancillary propagation covered work occurring solely consequence using peer--peer transmission receive copy likewise require acceptance. However, nothing License grants permission propagate modify covered work. actions infringe copyright accept License. Therefore, modifying propagating covered work, indicate acceptance License .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_10-automatic-licensing-of-downstream-recipients","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"10. Automatic Licensing of Downstream Recipients","title":"GNU General Public License","text":"time convey covered work, recipient automatically receives license original licensors, run, modify propagate work, subject License. responsible enforcing compliance third parties License. entity transaction transaction transferring control organization, substantially assets one, subdividing organization, merging organizations. propagation covered work results entity transaction, party transaction receives copy work also receives whatever licenses work party’s predecessor interest give previous paragraph, plus right possession Corresponding Source work predecessor interest, predecessor can get reasonable efforts. may impose restrictions exercise rights granted affirmed License. example, may impose license fee, royalty, charge exercise rights granted License, may initiate litigation (including cross-claim counterclaim lawsuit) alleging patent claim infringed making, using, selling, offering sale, importing Program portion .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_11-patents","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"11. Patents","title":"GNU General Public License","text":"contributor copyright holder authorizes use License Program work Program based. work thus licensed called contributor’s contributor version. contributor’s essential patent claims patent claims owned controlled contributor, whether already acquired hereafter acquired, infringed manner, permitted License, making, using, selling contributor version, include claims infringed consequence modification contributor version. purposes definition, control includes right grant patent sublicenses manner consistent requirements License. contributor grants non-exclusive, worldwide, royalty-free patent license contributor’s essential patent claims, make, use, sell, offer sale, import otherwise run, modify propagate contents contributor version. following three paragraphs, patent license express agreement commitment, however denominated, enforce patent (express permission practice patent covenant sue patent infringement). grant patent license party means make agreement commitment enforce patent party. convey covered work, knowingly relying patent license, Corresponding Source work available anyone copy, free charge terms License, publicly available network server readily accessible means, must either (1) cause Corresponding Source available, (2) arrange deprive benefit patent license particular work, (3) arrange, manner consistent requirements License, extend patent license downstream recipients. Knowingly relying means actual knowledge , patent license, conveying covered work country, recipient’s use covered work country, infringe one identifiable patents country reason believe valid. , pursuant connection single transaction arrangement, convey, propagate procuring conveyance , covered work, grant patent license parties receiving covered work authorizing use, propagate, modify convey specific copy covered work, patent license grant automatically extended recipients covered work works based . patent license discriminatory include within scope coverage, prohibits exercise , conditioned non-exercise one rights specifically granted License. may convey covered work party arrangement third party business distributing software, make payment third party based extent activity conveying work, third party grants, parties receive covered work , discriminatory patent license () connection copies covered work conveyed (copies made copies), (b) primarily connection specific products compilations contain covered work, unless entered arrangement, patent license granted, prior 28 March 2007. Nothing License shall construed excluding limiting implied license defenses infringement may otherwise available applicable patent law.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_12-no-surrender-of-others-freedom","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"12. No Surrender of Others’ Freedom","title":"GNU General Public License","text":"conditions imposed (whether court order, agreement otherwise) contradict conditions License, excuse conditions License. convey covered work satisfy simultaneously obligations License pertinent obligations, consequence may convey . example, agree terms obligate collect royalty conveying convey Program, way satisfy terms License refrain entirely conveying Program.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_13-use-with-the-gnu-affero-general-public-license","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"13. Use with the GNU Affero General Public License","title":"GNU General Public License","text":"Notwithstanding provision License, permission link combine covered work work licensed version 3 GNU Affero General Public License single combined work, convey resulting work. terms License continue apply part covered work, special requirements GNU Affero General Public License, section 13, concerning interaction network apply combination .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_14-revised-versions-of-this-license","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"14. Revised Versions of this License","title":"GNU General Public License","text":"Free Software Foundation may publish revised /new versions GNU General Public License time time. new versions similar spirit present version, may differ detail address new problems concerns. version given distinguishing version number. Program specifies certain numbered version GNU General Public License later version applies , option following terms conditions either numbered version later version published Free Software Foundation. Program specify version number GNU General Public License, may choose version ever published Free Software Foundation. Program specifies proxy can decide future versions GNU General Public License can used, proxy’s public statement acceptance version permanently authorizes choose version Program. Later license versions may give additional different permissions. However, additional obligations imposed author copyright holder result choosing follow later version.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_15-disclaimer-of-warranty","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"15. Disclaimer of Warranty","title":"GNU General Public License","text":"WARRANTY PROGRAM, EXTENT PERMITTED APPLICABLE LAW. EXCEPT OTHERWISE STATED WRITING COPYRIGHT HOLDERS /PARTIES PROVIDE PROGRAM  WITHOUT WARRANTY KIND, EITHER EXPRESSED IMPLIED, INCLUDING, LIMITED , IMPLIED WARRANTIES MERCHANTABILITY FITNESS PARTICULAR PURPOSE. ENTIRE RISK QUALITY PERFORMANCE PROGRAM . PROGRAM PROVE DEFECTIVE, ASSUME COST NECESSARY SERVICING, REPAIR CORRECTION.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_16-limitation-of-liability","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"16. Limitation of Liability","title":"GNU General Public License","text":"EVENT UNLESS REQUIRED APPLICABLE LAW AGREED WRITING COPYRIGHT HOLDER, PARTY MODIFIES /CONVEYS PROGRAM PERMITTED , LIABLE DAMAGES, INCLUDING GENERAL, SPECIAL, INCIDENTAL CONSEQUENTIAL DAMAGES ARISING USE INABILITY USE PROGRAM (INCLUDING LIMITED LOSS DATA DATA RENDERED INACCURATE LOSSES SUSTAINED THIRD PARTIES FAILURE PROGRAM OPERATE PROGRAMS), EVEN HOLDER PARTY ADVISED POSSIBILITY DAMAGES.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_17-interpretation-of-sections-15-and-16","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"17. Interpretation of Sections 15 and 16","title":"GNU General Public License","text":"disclaimer warranty limitation liability provided given local legal effect according terms, reviewing courts shall apply local law closely approximates absolute waiver civil liability connection Program, unless warranty assumption liability accompanies copy Program return fee. END TERMS CONDITIONS","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"how-to-apply-these-terms-to-your-new-programs","dir":"","previous_headings":"","what":"How to Apply These Terms to Your New Programs","title":"GNU General Public License","text":"develop new program, want greatest possible use public, best way achieve make free software everyone can redistribute change terms. , attach following notices program. safest attach start source file effectively state exclusion warranty; file least copyright line pointer full notice found. Also add information contact electronic paper mail. program terminal interaction, make output short notice like starts interactive mode: hypothetical commands show w show c show appropriate parts General Public License. course, program’s commands might different; GUI interface, use box. also get employer (work programmer) school, , sign copyright disclaimer program, necessary. information , apply follow GNU GPL, see . GNU General Public License permit incorporating program proprietary programs. program subroutine library, may consider useful permit linking proprietary applications library. want , use GNU Lesser General Public License instead License. first, please read .","code":" Copyright (C) 2018 Indrajeet Patil This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ipmisc Copyright (C) 2018 Indrajeet Patil This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/SUPPORT.html","id":null,"dir":"","previous_headings":"","what":"Getting help with ggstatsplot","title":"Getting help with ggstatsplot","text":"Thanks using ggstatsplot. filing issue, places explore pieces put together make process smooth possible. Start making minimal reproducible example using reprex package. haven’t heard used reprex , ’re treat! Seriously, reprex make R-question-asking endeavors easier (pretty insane ROI five ten minutes ’ll take learn ’s ). additional reprex pointers, check Get help! section tidyverse site. Armed reprex, next step figure ask. ’s question: start community.rstudio.com, /StackOverflow. people answer questions. ’s bug: ’re right place, file issue. ’re sure: let community help figure ! problem bug feature request, can easily return report . opening new issue, sure search issues pull requests make sure bug hasn’t reported /already fixed development version. default, search pre-populated :issue :open. can edit qualifiers (e.g. :pr, :closed) needed. example, ’d simply remove :open search issues repo, open closed. right place, need file issue, please review “File issues” paragraph tidyverse contributing guidelines. Thanks help!","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"additional-vignettes","dir":"Articles","previous_headings":"","what":"Additional vignettes","title":"Additional vignettes","text":"Due size constraints, available vignettes available website package: https://indrajeetpatil.github.io/ggstatsplot/articles/","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"vignettes-for-individual-functions","dir":"Articles","previous_headings":"Additional vignettes","what":"Vignettes for individual functions","title":"Additional vignettes","text":"ggbetweenstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html ggwithinstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html ggcorrmat: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html gghistostats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html ggdotplotstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html ggpiestats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html ggscatterstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html ggcoefstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"general-vignettes","dir":"Articles","previous_headings":"Additional vignettes","what":"General vignettes","title":"Additional vignettes","text":"Frequently Asked Questions (FAQ): https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html Graphic design statistical reporting principles guiding ggstatsplot development: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html Examples illustrating use purrr extend ggstatsplot functionality: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html Pairwise comparisons ggstatsplot: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"publication","dir":"Articles","previous_headings":"","what":"Publication","title":"Additional vignettes","text":"journal articles describing philosophy principles behind package: https://joss.theoj.org/papers/10.21105/joss.03167","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"presentation","dir":"Articles","previous_headings":"","what":"Presentation","title":"Additional vignettes","text":"addition vignettes, another quick way get overview package go following slides: https://indrajeetpatil.github.io/ggstatsplot_slides/slides/ggstatsplot_presentation.html#1","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"statistical-backend-of-ggstatsplot","dir":"Articles","previous_headings":"","what":"Statistical backend of {ggstatsplot}","title":"Additional vignettes","text":"statsExpressions package forms statistical backend processes data creates data frames expressions containing results statistical tests. exhaustive documentation package, see: https://indrajeetpatil.github.io/statsExpressions/","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"suggestions","dir":"Articles","previous_headings":"","what":"Suggestions","title":"Additional vignettes","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"Graphical displays can reveal problems statistical model might apparent purely numerical summaries. visualizations can also helpful reader evaluate validity model reported scholarly publication report. , given onerous costs involved, researchers often avoid preparing information-rich graphics exploring several statistical approaches tests available. ggstatsplot package R programming language (R Core Team, 2021) provides one-line syntax enrich ggplot2-based visualizations results statistical analysis embedded visualization . , package helps researchers adopt rigorous, reliable, robust data exploratory reporting workflow.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"statement-of-need","dir":"Articles","previous_headings":"","what":"Statement of Need","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"typical data analysis workflow, data visualization statistical modeling two different phases: visualization informs modeling, turn, modeling can suggest different visualization method, forth (Wickham & Grolemund, 2016). central idea ggstatsplot simple: combine two phases one form informative graphic statistical details. discussing benefits approach, show example (Figure 1). Example plot ggstatsplot package illustrating philosophy juxtaposing informative visualizations details statistical analysis. see supported plots statistical analyses, see package website: can seen, single line code, function produces details descriptive statistics, inferential statistics, effect size estimate uncertainty, pairwise comparisons, Bayesian hypothesis testing, Bayesian posterior estimate uncertainty. Moreover, details juxtaposed informative well-labeled visualizations. defaults designed follow best practices data visualization (Cleveland, 1985; Grant, 2018; Healy, 2018; Tufte, 2001; Wilke, 2019) (frequentist/Bayesian) statistical reporting (American Psychological Association, 2019; van Doorn et al., 2020). Without ggstatsplot, getting statistical details customizing plot require significant amount time effort. words, package removes trade-often faced researchers ease thoroughness data exploration cements good data exploration habits. Internally, data cleaning carried using tidyverse (Wickham et al., 2019), statistical analysis carried via statsExpressions (Patil, 2021) easystats (Ben-Shachar et al., 2020; Lüdecke et al., 2019, 2020, 2021; Makowski et al., 2019, 2020) packages. visualizations constructed using grammar graphics framework (Wilkinson, 2012), implemented ggplot2 package (Wickham, 2016).","code":"ggbetweenstats(iris, Species, Sepal.Length)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"benefits","dir":"Articles","previous_headings":"","what":"Benefits","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"summary, benefits ggstatsplot’s approach following. : produces charts displaying raw data, numerical plus graphical summary indices, avoids errors increases reproducibility statistical reporting, highlights importance effect providing effect size measures default, provides easy way evaluate absence effect using Bayes factors, encourages researchers readers evaluate statistical assumptions model context underlying data (Figure 2), easy simple enough someone little coding experience can use without making error may even encourage beginners programmatically analyze data, instead using GUI software. Comparing ‘Standard’ approach reporting statistical analysis publication/report ‘ggstatsplot’ approach reporting analysis next informative graphic. Note results described ‘Standard’ approach ‘Dinosaur’ dataset plotted right. Without accompanying visualization, hard evaluate validity results. ideal reporting practice hybrid two approaches plot contains visual numerical summaries statistical model, narrative provides interpretative context reported statistics.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"future-scope","dir":"Articles","previous_headings":"","what":"Future Scope","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"package ambitious, ongoing, long-term project. currently supports common statistical tests (parametric, non-parametric, robust, Bayesian t-test, one-way ANOVA, contingency table analysis, correlation analysis, meta-analysis, regression analyses, etc.) corresponding visualizations (box/violin plot, scatter plot, dot--whisker plot, pie chart, bar chart, etc.). continue expanding support increasing collection statistical analyses visualizations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"licensing-and-availability","dir":"Articles","previous_headings":"","what":"Licensing and Availability","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"ggstatsplot licensed GNU General Public License (v3.0), source code stored GitHub. spirit honest open science, requests suggestions fixes, feature updates, well general questions concerns encouraged via direct interaction contributors developers filing issue respecting Contribution Guidelines.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"acknowledgements","dir":"Articles","previous_headings":"","what":"Acknowledgements","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"like acknowledge support Mina Cikara, Fiery Cushman, Iyad Rahwan development project. ggstatsplot relies heavily easystats ecosystem, collaborative project created facilitate usage R statistical analyses. Thus, like thank members easystats well users. additionally like thank contributors ggstatsplot reporting bugs, providing helpful feedback, helping enhancements.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-just-want-the-plot-not-the-statistical-details--how-can-i-turn-them-off","dir":"Articles > Web_only","previous_headings":"","what":"1. I just want the plot, not the statistical details. How can I turn them off?","title":"Frequently Asked Questions (FAQ)","text":"functions ggstatsplot display results statistical analysis subtitle argument results.subtitle. Setting FALSE return plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-customize-the-details-contained-in-the-subtitle","dir":"Articles > Web_only","previous_headings":"","what":"2. How can I customize the details contained in the subtitle?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may wish include many details subtitle. case, can extract expression copy-paste part wish include. example, statistic p-values included:","code":"library(ggplot2) library(statsExpressions) # extracting detailed expression data_results <- oneway_anova(iris, Species, Sepal.Length, var.equal = TRUE) data_results$expression[[1]] #> list(italic(\"F\")[\"Fisher\"](2, 147) == \"119.26\", italic(p) == #> \"1.67e-31\", widehat(omega[\"p\"]^2) == \"0.61\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"150\") # adapting the details to your liking ggplot(iris, aes(x = Species, y = Sepal.Length)) + geom_boxplot() + labs(subtitle = ggplot2::expr(paste( italic(\"F\"), \"(\", \"2\", \",\", \"147\", \")=\", \"119.26\", \", \", italic(\"p\"), \"<\", \"0.001\" )))"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-am-getting-error-in-grid-call-error","dir":"Articles > Web_only","previous_headings":"","what":"3. I am getting Error in grid.Call error","title":"Frequently Asked Questions (FAQ)","text":"Sometimes, working RStudio, might see following error- can possibly solved increasing size RStudio viewer pane.","code":"Error in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : polygon edge not found"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"why-do-i-get-only-plot-in-return-but-not-the-subtitlecaption","dir":"Articles > Web_only","previous_headings":"","what":"4. Why do I get only plot in return but not the subtitle/caption?","title":"Frequently Asked Questions (FAQ)","text":"order prevent entire plotting function failing statistical analysis fails, functions ggstatsplot default first attempting run analysis fail, return empty (NULL) subtitle/caption. cases, wish diagnose analysis failing, using underlying function used carry statistical analysis. example, following returns plot statistical details subtitle. see statistical analysis failed, can look error underlying function:","code":"df <- data.frame(x = 1, y = 2) ggscatterstats(df, x, y, type = \"robust\") library(statsExpressions) df <- data.frame(x = 1, y = 2) corr_test(df, x, y, type = \"robust\") #> # A tibble: 1 × 14 #> parameter1 parameter2 effectsize estimate conf.level conf.low #> #> 1 x y Winsorized NA correlation NA 0.95 NA #> conf.high statistic df.error p.value method n.obs #> #> 1 NA NA NA NA Winsorized NA correlation 1 #> conf.method expression #> #> 1 normal "},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"what-statistical-test-was-carried-out","dir":"Articles > Web_only","previous_headings":"","what":"5. What statistical test was carried out?","title":"Frequently Asked Questions (FAQ)","text":"case sure statistical test produced results shown subtitle plot, best way get information either look documentation function used check associated vignette. Summary analysis handily available README: https://github.com/IndrajeetPatil/ggstatsplot/blob/master/README.md","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-use-ggstatsplot-functions-in-a-for-loop","dir":"Articles > Web_only","previous_headings":"","what":"6. How can I use {ggstatsplot} functions in a for loop?","title":"Frequently Asked Questions (FAQ)","text":"Given functions ggstatsplot use tidy evaluation, running functions loop requires minor adjustment inputs entered: said, repeating function execution across multiple columns data frame want , recommend purrr-based solution: solution work x y arguments, grouping.var argument, first needs converted symbol:","code":"col.name <- colnames(mtcars) # executing the function in a `for` loop for (i in 3:length(col.name)) { ggbetweenstats( data = mtcars, x = cyl, y = !!col.name[i] ) } df <- dplyr::filter(movies_long, genre == \"Comedy\" | genre == \"Drama\") grouped_ggscatterstats( data = df, x = !!colnames(df)[3], y = !!colnames(df)[5], grouping.var = !!rlang::sym(colnames(df)[8]), results.subtitle = FALSE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-have-uniform-y-axes-ranges-in-grouped_-functions","dir":"Articles > Web_only","previous_headings":"","what":"7. How can I have uniform Y-axes ranges in grouped_ functions?","title":"Frequently Asked Questions (FAQ)","text":"Across different facets grouped_ plot, axes ranges might sometimes differ. can use ggplot.component parameter (present functions) scale across individual plots:","code":"# provide a list of further `{ggplot2}` modifications using `ggplot.component` grouped_ggscatterstats( mtcars, disp, hp, grouping.var = am, results.subtitle = FALSE, ggplot.component = list(ggplot2::scale_y_continuous( breaks = seq(50, 350, 50), limits = (c(50, 350)) )) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"does-ggstatsplot-work-with-plotly","dir":"Articles > Web_only","previous_headings":"","what":"8. Does {ggstatsplot} work with plotly?","title":"Frequently Asked Questions (FAQ)","text":"plotly R graphing library makes easy produce interactive web graphics via plotly.js. ggstatsplot functions compatible plotly.","code":"library(plotly) # creating ggplot object with `{ggstatsplot}` p <- ggbetweenstats(mtcars, cyl, mpg) # converting to plotly object plotly::ggplotly(p, width = 480, height = 480)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-use-grouped_-functions-with-more-than-one-group","dir":"Articles > Web_only","previous_headings":"","what":"9. How can I use grouped_ functions with more than one group?","title":"Frequently Asked Questions (FAQ)","text":"Currently, grouped_ variants functions support repeating analysis across single grouping variable. Often, run analysis across combination two grouping variables. can easily achieved using purrr package. example-","code":"# creating a list by splitting data frame by combination of two different # grouping variables df_list <- mpg %>% dplyr::filter(drv %in% c(\"4\", \"f\"), fl %in% c(\"p\", \"r\")) %>% split(f = list(.$drv, .$fl), drop = TRUE) # checking if the length of the list is 4 length(df_list) #> [1] 4 # running correlation analyses between; this will return a *list* of plots plot_list <- purrr::pmap( .l = list( data = df_list, x = \"displ\", y = \"hwy\", results.subtitle = FALSE ), .f = ggscatterstats ) # arrange the list in a single plot grid combine_plots( plotlist = plot_list, plotgrid.args = list(nrow = 2), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-include-statistical-expressions-in-facet-labels","dir":"Articles > Web_only","previous_headings":"","what":"10. How can I include statistical expressions in facet labels?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(ggplot2) # data mtcars1 <- mtcars p <- grouped_ggbetweenstats( data = mtcars1, x = cyl, y = mpg, grouping.var = am ) expr1 <- extract_subtitle(p[[1L]]) expr2 <- extract_subtitle(p[[2L]]) mtcars1$am <- factor(mtcars1$am, levels = c(0, 1), labels = c(expr1, expr2)) mtcars1 %>% ggplot(aes(x = cyl, y = mpg)) + geom_jitter() + facet_wrap( vars(am), ncol = 1, strip.position = \"top\", labeller = ggplot2::label_parsed )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-customize-which-pairs-are-shown-in-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"11. How to customize which pairs are shown in pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"Currently, ggbetweenstats ggwithinstats, can either display significant comparisons, non-significant comparisons, comparisons. interested just one particular comparison? workaround using ggsignif:","code":"library(ggsignif) ggbetweenstats(mtcars, cyl, wt, pairwise.display = \"none\") + geom_signif(comparisons = list(c(\"4\", \"6\")), test.args = list(exact = FALSE))"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-access-data-frame-with-results-from-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"12. How to access data frame with results from pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"Behind scenes, ggstatsplot uses statsExpressions::pairwise_comparisons() function. can use extract actual data frames used ggstatsplot functions.","code":"library(ggplot2) pairwise_comparisons(mtcars, cyl, wt) #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell "},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-change-annotation-in-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"13. How can I change annotation in pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot defaults displaying exact p-values logged Bayes Factor values pairwise comparisons. wish adopt different annotation labels? customize :","code":"library(ggplot2) library(ggsignif) # converting to factor mtcars$cyl <- as.factor(mtcars$cyl) # creating the base plot p <- ggbetweenstats(mtcars, cyl, wt, pairwise.display = \"none\") # using `pairwise_comparisons()` function to create a data frame with results df <- pairwise_comparisons(mtcars, cyl, wt) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) %>% dplyr::mutate(asterisk_label = c(\"**\", \"***\", \"**\")) df #> # A tibble: 3 × 11 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression groups asterisk_label #> #> 1 Games-Howell ** #> 2 Games-Howell *** #> 3 Games-Howell ** # adding pairwise comparisons using `{ggsignif}` package p + ggsignif::geom_signif( comparisons = df$groups, map_signif_level = TRUE, annotations = df$asterisk_label, y_position = c(5.5, 5.75, 6.0), test = NULL, na.rm = TRUE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-access-data-frame-containing-statistical-analyses","dir":"Articles > Web_only","previous_headings":"","what":"14. How to access data frame containing statistical analyses?","title":"Frequently Asked Questions (FAQ)","text":"can use extract_stats() helper function .","code":"library(ggplot2) p <- ggpiestats(mtcars, am, cyl) # data frame with results extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize estimate #> #> 1 8.74 2 0.0126 Pearson's Chi-squared test Cramer's V (adj.) 0.464 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0 0.820 ncp chisq 32 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.415 0 0.671 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 16.8 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 2.82 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 6 × 5 #> cyl am counts perc .label #> #> 1 4 1 8 72.7 73% #> 2 6 1 3 42.9 43% #> 3 8 1 2 14.3 14% #> 4 4 0 3 27.3 27% #> 5 6 0 4 57.1 57% #> 6 8 0 12 85.7 86% #> #> $one_sample_data #> # A tibble: 3 × 19 #> cyl counts perc N statistic df p.value #> #> 1 8 14 43.8 (n = 14) 7.14 1 0.00753 #> 2 6 7 21.9 (n = 7) 0.143 1 0.705 #> 3 4 11 34.4 (n = 11) 2.27 1 0.132 #> method effectsize estimate conf.level #> #> 1 Chi-squared test for given probabilities Pearson's C 0.581 0.95 #> 2 Chi-squared test for given probabilities Pearson's C 0.141 0.95 #> 3 Chi-squared test for given probabilities Pearson's C 0.414 0.95 #> conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.186 0.778 ncp chisq 14 #> 2 0 0.652 ncp chisq 7 #> 3 0 0.723 ncp chisq 11 #> .label #> #> 1 list(~chi['gof']^2~(1)==7.14, ~italic(p)=='7.53e-03', ~italic(n)=='14') #> 2 list(~chi['gof']^2~(1)==0.14, ~italic(p)=='0.71', ~italic(n)=='7') #> 3 list(~chi['gof']^2~(1)==2.27, ~italic(p)=='0.13', ~italic(n)=='11') #> .p.label #> #> 1 list(~italic(p)=='7.53e-03') #> 2 list(~italic(p)=='0.71') #> 3 list(~italic(p)=='0.13') #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-remove-a-particular-geom-layer-from-the-plot","dir":"Articles > Web_only","previous_headings":"","what":"15. How can I remove a particular geom layer from the plot?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may want particular geom layer displayed. can remove setting transparency (alpha) layer 0. example, let’s say want remove points ggwithintstats() plot:","code":"# before ggwithinstats( data = bugs_long, x = condition, y = desire, results.subtitle = FALSE, pairwise.display = \"none\" ) # after ggwithinstats( data = bugs_long, x = condition, y = desire, point.args = list(alpha = 0), results.subtitle = FALSE, pairwise.display = \"none\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-modify-the-fill-colors-with-custom-values","dir":"Articles > Web_only","previous_headings":"","what":"16. How can I modify the fill colors with custom values?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may satisfied available color palette values. case, can also change colors manually specifying values. can also done grouped_ functions:","code":"library(ggplot2) ggbarstats(mtcars, am, cyl, results.subtitle = FALSE) + scale_fill_manual(values = c(\"#E7298A\", \"#66A61E\")) grouped_ggpiestats( data = mtcars, grouping.var = am, x = cyl, ggplot.component = ggplot2::scale_fill_grey() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-modify-grouped_-outputs-using-ggplot2-functions","dir":"Articles > Web_only","previous_headings":"","what":"17. How can I modify grouped_ outputs using {ggplot2} functions?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot ggplot objects, can modified, just like ggplot object. exception plots returned grouped_ functions, way tackle .","code":"library(paletteer) library(ggplot2) grouped_ggbetweenstats( mtcars, cyl, wt, grouping.var = am, results.subtitle = FALSE, pairwise.display = \"none\", # modify further with `{ggplot2}` functions ggplot.component = list( scale_color_manual(values = paletteer::paletteer_c(\"viridis::viridis\", 3)), theme(axis.text.x = element_text(angle = 90)) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-extract-data-frame-containing-results-from-ggstatsplot","dir":"Articles > Web_only","previous_headings":"","what":"18. How can I extract data frame containing results from {ggstatsplot}?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot can return expressions subtitle caption, want actually get back data frame containing results? two options: Use ggstatsplot::extract_stats() function go source package statsExpressions (see examples)","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-remove-sample-size-labels-for-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"19. How can I remove sample size labels for ggbarstats?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(gginnards) ## create a plot p <- ggbarstats(mtcars, am, cyl) ## remove layer corresponding to sample size delete_layers(p, \"GeomText\")"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"statistical-analysis-i-want-to-carry-out-is-not-available--what-can-i-do","dir":"Articles > Web_only","previous_headings":"","what":"20. Statistical analysis I want to carry out is not available. What can I do?","title":"Frequently Asked Questions (FAQ)","text":"default, since ggstatsplot always allows just one type test per statistical approach, sometimes favorite test might available. example, ggstatsplot provides Spearman’s ρ\\rho, Kendall’s τ\\tau non-parametric correlation test. cases, can override defaults use statsExpressions create custom expressions display plot. forewarned expression building function statsExpressions stable yet.","code":"library(correlation) library(statsExpressions) library(ggplot2) # data with two variables of interest df <- dplyr::select(mtcars, wt, mpg) # correlation results results <- correlation(df, method = \"kendall\") %>% insight::standardize_names(style = \"broom\") # creating expression out of these results df_results <- statsExpressions::add_expression_col( data = results, no.parameters = 0L, statistic.text = list(quote(italic(\"T\"))), effsize.text = list(quote(widehat(italic(tau))[\"Kendall\"])), n = results$n.obs[[1]] ) # using custom expression in plot ggscatterstats(df, wt, mpg, results.subtitle = FALSE) + labs(subtitle = df_results$expression[[1]])"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"is-there-way-to-adjust-my-alpha-level","dir":"Articles > Web_only","previous_headings":"","what":"21. Is there way to adjust my alpha level?","title":"Frequently Asked Questions (FAQ)","text":", way adjust alpha use grouped_ functions (e.g., grouped_ggwithinstats). just report paper/article/report, adjusted alpha . , example, iif 2 tests carried , alpha going 0.05/2 = 0.025. , describe Methods section, can mention tests considered significant p < 0.025. can even mention caption.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-build-a-shiny-app-using-ggstatsplot-functions","dir":"Articles > Web_only","previous_headings":"","what":"22. How can I build a Shiny app using {ggstatsplot} functions?","title":"Frequently Asked Questions (FAQ)","text":"example using ggbetweenstats function.","code":"library(shiny) library(rlang) ui <- fluidPage( headerPanel(\"Example - ggbetweenstats\"), sidebarPanel( selectInput(\"x\", \"xcol\", \"X Variable\", choices = names(iris)[5]), selectInput(\"y\", \"ycol\", \"Y Variable\", choices = names(iris)[1:4]) ), mainPanel(plotOutput(\"plot\")) ) server <- function(input, output) { output$plot <- renderPlot({ ggbetweenstats(iris, !!input$x, !!input$y) }) } shinyApp(ui, server)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-change-size-of-annotations-for-combined-plot-in-grouped_-functions","dir":"Articles > Web_only","previous_headings":"","what":"23. How to change size of annotations for combined plot in grouped_* functions?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(ggplot2) grouped_ggbetweenstats( data = dplyr::filter(ggplot2::mpg, drv != \"4\"), x = year, y = hwy, grouping.var = drv, results.subtitle = FALSE, ## arguments given to `{patchwork}` for combining plots annotation.args = list( title = \"this is my title\", subtitle = \"this is my subtitle\", theme = ggplot2::theme( plot.subtitle = element_text(size = 20), plot.title = element_text(size = 30) ) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-change-size-of-text-in-the-subtitle","dir":"Articles > Web_only","previous_headings":"","what":"24. How to change size of text in the subtitle?","title":"Frequently Asked Questions (FAQ)","text":"","code":"ggbetweenstats( data = iris, x = Species, y = Sepal.Length, ggplot.component = list(theme(plot.subtitle = element_text(size = 20, face = \"bold\"))) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-display-pairwise-comparison-letter-in-a-plot","dir":"Articles > Web_only","previous_headings":"","what":"25. How to display pairwise comparison letter in a plot?","title":"Frequently Asked Questions (FAQ)","text":"possible box, see comment.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"does-ggstatsplot-carry-out-assumption-checks","dir":"Articles > Web_only","previous_headings":"","what":"26. Does {ggstatsplot} carry out assumption checks?","title":"Frequently Asked Questions (FAQ)","text":", ggstatsplot carry analysis whether assumptions met . just carry whatever test ask carry . check assumptions, can use different package called performance: https://easystats.github.io/performance/reference/index.html#check-model-assumptions--data-properties","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-am-on-ubuntu-and-have-trouble-installing-pmcmrplus","dir":"Articles > Web_only","previous_headings":"","what":"27. I am on Ubuntu and have trouble installing {PMCMRplus}?","title":"Frequently Asked Questions (FAQ)","text":"Linux users may encounter installation problems. particular, ggstatsplot package depends {PMCMRplus} package. means operating system lacks gmp Rmpfr libraries. use Ubuntu, can install dependencies: following README file briefly describes installation procedure: https://CRAN.R-project.org/package=PMCMRplus/readme/README.html MacOS, look post.","code":"ERROR: dependencies ‘gmp’, ‘Rmpfr’ are not available for package ‘PMCMRplus’ sudo apt-get install libgmp3-dev sudo apt-get install libmpfr-dev"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-modify-the-secondary-y-axis-title","dir":"Articles > Web_only","previous_headings":"","what":"28. How to modify the secondary Y-axis title?","title":"Frequently Asked Questions (FAQ)","text":"","code":"ggbetweenstats( mtcars, cyl, wt, ggplot.component = list( ggplot2::scale_y_continuous(sec.axis = ggplot2::dup_axis(name = \"My custom test\")) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-turn-off-scientific-notation-in-expressions","dir":"Articles > Web_only","previous_headings":"","what":"29. How to turn off scientific notation in expressions?","title":"Frequently Asked Questions (FAQ)","text":"","code":"set.seed(123) library(ggstatsplot) library(WRS2) ggwithinstats( WineTasting, Wine, Taste, paired = TRUE ) ggwithinstats( WineTasting, Wine, Taste, paired = TRUE, digits = 4L )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Frequently Asked Questions (FAQ)","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"introduction-to-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Introduction to ggbarstats","title":"ggbarstats","text":"function ggbarstats can used quick data exploration /prepare publication-ready pie charts summarize statistical relationship(s) among one categorical variables. see examples use function vignette. begin , instances want use ggbarstats- check proportion observations matches hypothesized proportion, typically known “Goodness Fit” test see frequency distribution two categorical variables independent using contingency table analysis check proportion observations level categorical variable equal Note: following demo uses pipe operator (%>%), familiar operator, good explanation: http://r4ds..co.nz/pipes.html. ggbarstats works data organized data frames tibbles. work data structures like base-R tables matrices. can operate data frames organized one row per observation data frames one column containing counts. vignette provides examples (see examples ). help demonstrate ggbarstats can used categorical (also known nominal) data, modified version original Titanic dataset (datasets library) provided ggstatsplot package name Titanic_full. Titanic Passenger Survival Dataset provides information “fate passengers fatal maiden voyage ocean liner Titanic, including economic status (class), sex, age, survival.” Let’s look structure .","code":"library(dplyr) # looking at the original data in tabular format dplyr::glimpse(Titanic) #> 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ... #> - attr(*, \"dimnames\")=List of 4 #> ..$ Class : chr [1:4] \"1st\" \"2nd\" \"3rd\" \"Crew\" #> ..$ Sex : chr [1:2] \"Male\" \"Female\" #> ..$ Age : chr [1:2] \"Child\" \"Adult\" #> ..$ Survived: chr [1:2] \"No\" \"Yes\" # looking at the dataset as a tibble or data frame dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"independence-or-association-with-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Independence (or association) with ggbarstats","title":"ggbarstats","text":"Let’s next investigate whether passenger’s sex independent , associated , survival status, .e., want test whether proportion people survived different sexes. plot clearly shows survival rates different males females. Pearson’s χ2\\chi^2-test independence significant given large sample size. Additionally, females males, survival rates significantly different 50% indicated goodness fit test gender.","code":"ggbarstats( data = Titanic_full, x = Survived, y = Sex )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"grouped-analysis-with-grouped_ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggbarstats","title":"ggbarstats","text":"want analysis gender also factor passenger’s age (Age)? information classifies passengers Child Adult, perhaps makes difference survival rate? ggstatsplot provides special helper function instances: grouped_ggbarstats. convenient wrapper function around combine_plots. applies ggbarstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. resulting pie charts statistics make story clear. adults gender much matters. Women survived much higher rates men. children gender significantly associated survival male female children survival rate significantly different 50/50.","code":"grouped_ggbarstats( # arguments relevant for `ggbarstats()` data = Titanic_full, x = Survived, y = Sex, grouping.var = Age, digits.perc = 1, package = \"ggsci\", palette = \"category10_d3\", # arguments relevant for `combine_plots()` title.text = \"Passenger survival on the Titanic by gender and age\", caption.text = \"Asterisks denote results from proportion tests; \\n***: p < 0.001, ns: non-significant\", plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"grouped-analysis-with-ggbarstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggbarstats + {purrr}","title":"ggbarstats","text":"Although grouped_ggbarstats provides quick way explore data, leaves much desired. example, may want add different captions, titles, themes, palettes level grouping variable, etc. cases like , better use purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"working-with-data-organized-by-counts","dir":"Articles > Web_only","previous_headings":"","what":"Working with data organized by counts","title":"ggbarstats","text":"ggbarstats can also work data frame containing counts (aka tabled data), .e., row doesn’t correspond unique observation. example, consider following notional fishing data frame containing data two boats (B) number different types fish caught months February March. data frame, row corresponds unique combination Boat Month. data organized way, make slightly different call ggbarstats() function: use counts argument. want investigate relationship type fish month (test independence), command : results support hypothesis type fish caught related month ’re fishing. χ2\\chi^2 independence test results top plot. February catch significantly Haddock hypothesize equal distribution. Whereas March results indicate ’s strong evidence distribution isn’t equal.","code":"# (this is completely fictional; I don't know first thing about fishing!) fishing <- tibble::as_tibble(data.frame( Boat = c(rep(\"B\", 4), rep(\"A\", 4), rep(\"A\", 4), rep(\"B\", 4)), Month = c(rep(\"February\", 2), rep(\"March\", 2), rep(\"February\", 2), rep(\"March\", 2)), Fish = c( \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\", \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\" ), SumOfCaught = c(25, 20, 35, 40, 40, 25, 30, 42, 40, 30, 33, 26, 100, 30, 20, 20) )) fishing #> # A tibble: 16 × 4 #> Boat Month Fish SumOfCaught #> #> 1 B February Bass 25 #> 2 B February Catfish 20 #> 3 B March Cod 35 #> 4 B March Haddock 40 #> 5 A February Cod 40 #> 6 A February Haddock 25 #> 7 A March Bass 30 #> 8 A March Catfish 42 #> 9 A February Bass 40 #> 10 A February Catfish 30 #> 11 A March Cod 33 #> 12 A March Haddock 26 #> 13 B February Cod 100 #> 14 B February Haddock 30 #> 15 B March Bass 20 #> 16 B March Catfish 20 ggbarstats( data = fishing, x = Fish, y = Month, counts = SumOfCaught, label = \"both\", package = \"ggsci\", palette = \"default_jama\", title = \"Type fish caught by month\", caption = \"Source: completely made up\", legend.title = \"Type fish caught: \" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggbarstats","text":"Let’s imagine ’re conducting clinical trials new imaginary wonder drug. 134 subjects entering trial. enter healthy (n = 96), enter trial already sick (n = 38). receive treatment intervention. check back month see healthy sick. classic pre/post experimental design. ’re interested seeing change groupings. case within-subjects designs, can set paired = TRUE, display results McNemar test subtitle. (Note: forget set paired = TRUE, results inaccurate.) results bode well experimental wonder drug. 96 started healthy 4% sick month. Ideally, hoped zero reality seldom perfect. side 38 started sick number reduced just 13 34% marked improvement.","code":"# create imaginary data clinical_trial <- tibble::tribble( ~SickBefore, ~SickAfter, ~Counts, \"No\", \"Yes\", 4, \"Yes\", \"No\", 25, \"Yes\", \"Yes\", 13, \"No\", \"No\", 92 ) ggbarstats( data = clinical_trial, x = SickAfter, y = SickBefore, counts = Counts, paired = TRUE, label = \"both\", title = \"Results from imaginary clinical trial\", package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggbarstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggbarstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s χ2\\chi^2-test independence revealed , across 32 automobiles, showed significant association transmission engine number cylinders. Bayes Factor analysis revealed data 16.78 times probable alternative hypothesis compared null hypothesis. can considered strong evidence (Jeffreys, 1961) favor alternative hypothesis.","code":"ggbarstats(mtcars, am, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggbarstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"comparisons-between-groups-with-ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"Comparisons between groups with ggbetweenstats","title":"ggbetweenstats","text":"illustrate function can used, use gapminder dataset throughout vignette. dataset provides values life expectancy, GDP per capita, population, 5 year intervals, 1952 2007, 142 countries (courtesy Gapminder Foundation). Let’s look data- Note: remainder vignette, ’re going exclude Oceania analysis simply observations (countries). Suppose first thing want inspect distribution life expectancy countries continent 2007. also want know mean differences life expectancy continents statistically significant. simplest form function call - Note: function automatically decides whether independent samples t-test preferred (2 groups) Oneway ANOVA (3 groups). based number levels grouping variable. output function ggplot object means can modified ggplot2 functions. can seen plot, function default returns Bayes Factor test. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayes Factor values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF10)log_{e}(BF_{01}) = - log_{e}(BF_{10})). can make output much aesthetically pleasing well informative making use many optional parameters ggbetweenstats. ’ll add title caption, better x y axis labels. can change overall theme well color palette use. can appreciated effect size (partial eta squared) 0.635, large differences mean life expectancy across continents. Importantly, plot also helps us appreciate distributions within given continent. example, although Asian countries much better African countries, average, Afghanistan particularly grim average Asian continent, possibly reflecting war political turmoil. far used classic parametric test boxviolin plot, can also use available options: type (test) argument also accepts following abbreviations: \"p\" (parametric), \"np\" (nonparametric), \"r\" (robust), \"bf\" (Bayes Factor). type plot displayed can also modified (\"box\", \"violin\", \"boxviolin\"). color palettes can modified. Let’s use combine_plots function make one plot four separate plots demonstrates options. Let’s compare life expectancy countries first last year available data 1957 2007. generate plots one one use combine_plots merge one plot common labeling. possible, necessarily recommended, make plot different colors themes. example,","code":"library(gapminder) dplyr::glimpse(gapminder::gapminder) #> Rows: 1,704 #> Columns: 6 #> $ country \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", … #> $ continent Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, … #> $ year 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, … #> $ lifeExp 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8… #> $ pop 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12… #> $ gdpPercap 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, … ggbetweenstats( data = dplyr::filter(gapminder::gapminder, year == 2007, continent != \"Oceania\"), x = continent, y = lifeExp ) ggbetweenstats( data = dplyr::filter(gapminder, year == 2007, continent != \"Oceania\"), x = continent, ## grouping/independent variable y = lifeExp, ## dependent variables type = \"robust\", ## type of statistics xlab = \"Continent\", ## label for the x-axis ylab = \"Life expectancy\", ## label for the y-axis ## turn off messages ggtheme = ggplot2::theme_gray(), ## a different theme package = \"yarrr\", ## package from which color palette is to be taken palette = \"info2\", ## choosing a different color palette title = \"Comparison of life expectancy across continents (Year: 2007)\", caption = \"Source: Gapminder Foundation\" ) + ## modifying the plot further ggplot2::scale_y_continuous( limits = c(35, 85), breaks = seq(from = 35, to = 85, by = 5) ) ## selecting subset of the data df_year <- dplyr::filter(gapminder::gapminder, year == 2007 | year == 1957) p1 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", # to remove violin plot violin.args = list(width = 0), type = \"p\", conf.level = 0.99, title = \"Parametric test\", package = \"ggsci\", palette = \"nrc_npg\" ) p2 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", # to remove box plot boxplot.args = list(width = 0), type = \"np\", conf.level = 0.99, title = \"Non-parametric Test\", package = \"ggsci\", palette = \"uniform_startrek\" ) p3 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", type = \"r\", conf.level = 0.99, title = \"Robust Test\", tr = 0.005, package = \"wesanderson\", palette = \"Royal2\", digits = 3 ) ## Bayes Factor for parametric t-test and boxviolin plot p4 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", type = \"bayes\", violin.args = list(width = 0), boxplot.args = list(width = 0), point.args = list(alpha = 0), title = \"Bayesian Test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## combining the individual plots into a single plot combine_plots( list(p1, p2, p3, p4), plotgrid.args = list(nrow = 2), annotation.args = list( title = \"Comparison of life expectancy between 1957 and 2007\", caption = \"Source: Gapminder Foundation\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"grouped-analysis-with-grouped_ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggbetweenstats","title":"ggbetweenstats","text":"want analyze continent 1957 2007? combination two previous efforts. ggstatsplot provides special helper function instances: grouped_ggbetweenstats. merely wrapper function around combine_plots. applies ggbetweenstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s focus 4 continents following years: 1967, 1987, 2007. Also, let’s carry pairwise comparisons see differences every pair continents. seen plot, although life expectancy improving steadily across continents go 1967 2007, improvement happening rate continents. Additionally, irrespective year look , still find significant differences life expectancy across continents surprisingly consistent across five decades (based observed effect sizes).","code":"## select part of the dataset and use it for plotting gapminder::gapminder %>% dplyr::filter(year %in% c(1967, 1987, 2007), continent != \"Oceania\") %>% grouped_ggbetweenstats( ## arguments relevant for ggbetweenstats x = continent, y = lifeExp, grouping.var = year, xlab = \"Continent\", ylab = \"Life expectancy\", pairwise.display = \"significant\", ## display only significant pairwise comparisons p.adjust.method = \"fdr\", ## adjust p-values for multiple tests using this method # ggtheme = ggthemes::theme_tufte(), package = \"ggsci\", palette = \"default_jco\", ## arguments relevant for combine_plots annotation.args = list(title = \"Changes in life expectancy across continents (1967-2007)\"), plotgrid.args = list(nrow = 3) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"grouped-analysis-with-ggbetweenstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggbetweenstats + {purrr}","title":"ggbetweenstats","text":"Although grouping function provides quick way explore data, leaves much desired. example, type plot test applied years, maybe want change different years, maybe want gave different effect sizes different years. type customization different levels grouping variable possible grouped_ggbetweenstats, can easily achieved using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggbetweenstats","text":"repeated measures designs, ggwithinstats() function can used: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggbetweenstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggbetweenstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Welch’s t-test revealed , across 60 guinea pigs, although tooth length higher animal received vitamin C via orange juice compared via ascorbic acid, effect statistically significant. effect size (g=0.49)(g = 0.49) medium, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 1.2 times probable alternative hypothesis compared null hypothesis. can considered weak evidence (Jeffreys, 1961) favor alternative hypothesis. Similar reporting style can followed function performs one-way ANOVA instead t-test.","code":"ggbetweenstats(ToothGrowth, supp, len)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggbetweenstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"general-structure-of-the-plots","dir":"Articles > Web_only","previous_headings":"","what":"General structure of the plots","title":"ggcoefstats","text":"Although statistical models displayed plot may differ based class models investigated, aspects plot invariant across models: dot-whisker plot contains dot representing estimate confidence intervals (95% default). estimate can either effect sizes (tests depend F-statistic) regression coefficients (tests t-, χ2\\chi^{2}-, z-statistic), etc. confidence intervals can sometimes asymmetric bootstrapping used. label attached dot provide details statistical test carried typically contain estimate, statistic, p-value. caption contain diagnostic information, available, models can useful model selection: smaller Akaike’s Information Criterion (AIC) Bayesian Information Criterion (BIC) values, “better” model . output function ggplot2 object , thus, can modified (e.g., change themes, etc.) ggplot2 functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"supported-models","dir":"Articles > Web_only","previous_headings":"","what":"Supported models","title":"ggcoefstats","text":"regression models supported underlying packages also supported ggcoefstats().","code":"insight::supported_models() #> [1] \"aareg\" \"afex_aov\" #> [3] \"AKP\" \"Anova.mlm\" #> [5] \"anova.rms\" \"aov\" #> [7] \"aovlist\" \"Arima\" #> [9] \"averaging\" \"bamlss\" #> [11] \"bamlss.frame\" \"bayesQR\" #> [13] \"bayesx\" \"BBmm\" #> [15] \"BBreg\" \"bcplm\" #> [17] \"betamfx\" \"betaor\" #> [19] \"betareg\" \"BFBayesFactor\" #> [21] \"bfsl\" \"BGGM\" #> [23] \"bife\" \"bifeAPEs\" #> [25] \"bigglm\" \"biglm\" #> [27] \"blavaan\" \"blrm\" #> [29] \"bracl\" \"brglm\" #> [31] \"brmsfit\" \"brmultinom\" #> [33] \"btergm\" \"censReg\" #> [35] \"cgam\" \"cgamm\" #> [37] \"cglm\" \"clm\" #> [39] \"clm2\" \"clmm\" #> [41] \"clmm2\" \"clogit\" #> [43] \"coeftest\" \"complmrob\" #> [45] \"confusionMatrix\" \"coxme\" #> [47] \"coxph\" \"coxph_weightit\" #> [49] \"coxph.penal\" \"coxr\" #> [51] \"cpglm\" \"cpglmm\" #> [53] \"crch\" \"crq\" #> [55] \"crqs\" \"crr\" #> [57] \"dep.effect\" \"DirichletRegModel\" #> [59] \"draws\" \"drc\" #> [61] \"eglm\" \"elm\" #> [63] \"emmGrid\" \"epi.2by2\" #> [65] \"ergm\" \"feglm\" #> [67] \"feis\" \"felm\" #> [69] \"fitdistr\" \"fixest\" #> [71] \"flac\" \"flexsurvreg\" #> [73] \"flic\" \"gam\" #> [75] \"Gam\" \"gamlss\" #> [77] \"gamm\" \"gamm4\" #> [79] \"garch\" \"gbm\" #> [81] \"gee\" \"geeglm\" #> [83] \"ggcomparisons\" \"glht\" #> [85] \"glimML\" \"glm\" #> [87] \"Glm\" \"glm_weightit\" #> [89] \"glmerMod\" \"glmgee\" #> [91] \"glmm\" \"glmmadmb\" #> [93] \"glmmPQL\" \"glmmTMB\" #> [95] \"glmrob\" \"glmRob\" #> [97] \"glmx\" \"gls\" #> [99] \"gmnl\" \"hglm\" #> [101] \"HLfit\" \"htest\" #> [103] \"hurdle\" \"iv_robust\" #> [105] \"ivFixed\" \"ivprobit\" #> [107] \"ivreg\" \"lavaan\" #> [109] \"lm\" \"lm_robust\" #> [111] \"lme\" \"lmerMod\" #> [113] \"lmerModLmerTest\" \"lmodel2\" #> [115] \"lmrob\" \"lmRob\" #> [117] \"logistf\" \"logitmfx\" #> [119] \"logitor\" \"logitr\" #> [121] \"LORgee\" \"lqm\" #> [123] \"lqmm\" \"lrm\" #> [125] \"manova\" \"MANOVA\" #> [127] \"marginaleffects\" \"marginaleffects.summary\" #> [129] \"margins\" \"maxLik\" #> [131] \"mblogit\" \"mclogit\" #> [133] \"mcmc\" \"mcmc.list\" #> [135] \"MCMCglmm\" \"mcp1\" #> [137] \"mcp12\" \"mcp2\" #> [139] \"med1way\" \"mediate\" #> [141] \"merMod\" \"merModList\" #> [143] \"meta_bma\" \"meta_fixed\" #> [145] \"meta_random\" \"metaplus\" #> [147] \"mhurdle\" \"mipo\" #> [149] \"mira\" \"mixed\" #> [151] \"MixMod\" \"mixor\" #> [153] \"mjoint\" \"mle\" #> [155] \"mle2\" \"mlm\" #> [157] \"mlogit\" \"mmclogit\" #> [159] \"mmlogit\" \"mmrm\" #> [161] \"mmrm_fit\" \"mmrm_tmb\" #> [163] \"model_fit\" \"multinom\" #> [165] \"multinom_weightit\" \"mvord\" #> [167] \"negbinirr\" \"negbinmfx\" #> [169] \"nestedLogit\" \"ols\" #> [171] \"onesampb\" \"ordinal_weightit\" #> [173] \"orm\" \"pgmm\" #> [175] \"phyloglm\" \"phylolm\" #> [177] \"plm\" \"PMCMR\" #> [179] \"poissonirr\" \"poissonmfx\" #> [181] \"polr\" \"probitmfx\" #> [183] \"psm\" \"Rchoice\" #> [185] \"ridgelm\" \"riskRegression\" #> [187] \"rjags\" \"rlm\" #> [189] \"rlmerMod\" \"RM\" #> [191] \"rma\" \"rma.uni\" #> [193] \"robmixglm\" \"robtab\" #> [195] \"rq\" \"rqs\" #> [197] \"rqss\" \"rvar\" #> [199] \"Sarlm\" \"scam\" #> [201] \"selection\" \"sem\" #> [203] \"SemiParBIV\" \"semLm\" #> [205] \"semLme\" \"serp\" #> [207] \"slm\" \"speedglm\" #> [209] \"speedlm\" \"stanfit\" #> [211] \"stanmvreg\" \"stanreg\" #> [213] \"summary.lm\" \"survfit\" #> [215] \"survreg\" \"svy_vglm\" #> [217] \"svy2lme\" \"svychisq\" #> [219] \"svyglm\" \"svyolr\" #> [221] \"t1way\" \"tobit\" #> [223] \"trimcibt\" \"truncreg\" #> [225] \"vgam\" \"vglm\" #> [227] \"wbgee\" \"wblm\" #> [229] \"wbm\" \"wmcpAKP\" #> [231] \"yuen\" \"yuend\" #> [233] \"zcpglm\" \"zeroinfl\" #> [235] \"zerotrunc\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"examples-of-supported-models","dir":"Articles > Web_only","previous_headings":"","what":"Examples of supported models","title":"ggcoefstats","text":"following examples organized statistics type. used much longer vignette examples wide collection regression models, sake maintainability, removed . old version can found .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"t-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"t-statistic","title":"ggcoefstats","text":"linear model (lm) linear mixed-effects model (lmer/lmerMod) Note mixed-effects models, fixed effects shown confidence intervals random effects terms. case, like see terms, can use parameters::model_parameters().","code":"library(lme4) # lm model mod1 <- stats::lm(formula = Reaction ~ Days, data = sleepstudy) # merMod model mod2 <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy) # combining the two different plots combine_plots( plotlist = list( ggcoefstats(mod1) + ggplot2::labs(x = parse(text = \"'regression coefficient' ~italic(beta)\")), ggcoefstats(mod2) + ggplot2::labs( x = parse(text = \"'regression coefficient' ~italic(beta)\"), y = \"fixed effects\" ) ), plotgrid.args = list(nrow = 2), annotation.args = list(title = \"Relationship between movie budget and its IMDB rating\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"z-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"z-statistic","title":"ggcoefstats","text":"Aalen’s additive regression model censored data (aareg)","code":"library(survival) # model afit <- survival::aareg( formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, dfbeta = TRUE ) ggcoefstats( x = afit, title = \"Aalen's additive regression model\", subtitle = \"(for censored data)\", digits = 3 )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"chi2-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"χ2\\chi^2-statistic","title":"ggcoefstats","text":"Cox proportional hazards regression model (coxph) Another example frailty term.","code":"library(survival) # create the simplest-test data set test1 <- list( time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1) ) # fit a stratified model mod_coxph <- survival::coxph( formula = Surv(time, status) ~ x + strata(sex), data = test1 ) ggcoefstats( x = mod_coxph, title = \"Cox proportional hazards regression model\" ) library(survival) # model mod_coxph <- survival::coxph( formula = Surv(time, status) ~ age + sex + frailty(inst), data = lung ) ggcoefstats( x = mod_coxph, title = \"Proportional Hazards Regression Model\\nwith Frailty penalty function\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"f-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"F-statistic","title":"ggcoefstats","text":"omnibus ANOVA (aov) Note can also use function model selection. can try different models code see AIC BIC values change.","code":"library(ggplot2) # model mod_aov <- stats::aov(formula = rating ~ mpaa * genre, data = movies_long) ggcoefstats( x = mod_aov, effectsize.type = \"omega\", # changing the effect size estimate being displayed point.args = list(color = \"red\", size = 4, shape = 15), # changing the point geom package = \"dutchmasters\", # package from which color palette is to be taken palette = \"milkmaid\", # color palette for labels title = \"omnibus ANOVA\", # title for the plot exclude.intercept = TRUE ) + # further modification with the ggplot2 commands # note the order in which the labels are entered ggplot2::scale_y_discrete(labels = c(\"MPAA\", \"Genre\", \"Interaction term\")) + ggplot2::labs(x = \"effect size estimate (eta-squared)\", y = NULL) combine_plots( plotlist = list( # model 1 ggcoefstats( x = stats::aov(formula = rating ~ mpaa, data = movies_long), title = \"1. Only MPAA ratings\" ), # model 2 ggcoefstats( x = stats::aov(formula = rating ~ genre, data = movies_long), title = \"2. Only genre\" ), # model 3 ggcoefstats( x = stats::aov(formula = rating ~ mpaa + genre, data = movies_long), title = \"3. Additive effect of MPAA and genre\" ), # model 4 ggcoefstats( x = stats::aov(formula = rating ~ mpaa * genre, data = movies_long), title = \"4. Multiplicative effect of MPAA and genre\" ) ), annotation.args = list(title = \"Model selection using ggcoefstats\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"bayesian-models---no-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"Bayesian models - no statistic","title":"ggcoefstats","text":"","code":"library(BayesFactor) # one sample t-test mod1 <- ttestBF(mtcars$wt, mu = 3) # independent t-test mod2 <- ttestBF(formula = wt ~ am, data = mtcars) # paired t-test mod3 <- ttestBF(x = sleep$extra[1:10], y = sleep$extra[11:20], paired = TRUE) # correlation mod4 <- correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width) # contingency tabs (not supported) data(\"raceDolls\") mod5 <- contingencyTableBF( raceDolls, sampleType = \"indepMulti\", fixedMargin = \"cols\" ) # anova data(\"puzzles\") mod6 <- anovaBF( formula = RT ~ shape * color + ID, data = puzzles, whichRandom = \"ID\", whichModels = \"top\", progress = FALSE ) # regression-1 mod7 <- regressionBF(rating ~ ., data = attitude, progress = FALSE) # meta-analysis t <- c(-0.15, 2.39, 2.42, 2.43, -0.15, 2.39, 2.42, 2.43) N <- c(100, 150, 97, 99, 99, 97, 100, 150) mod8 <- meta.ttestBF(t, N, rscale = 1, nullInterval = c(0, Inf)) # proportion test mod9 <- proportionBF(y = 15, N = 25, p = 0.5) # list of plots combine_plots( plotlist = list( ggcoefstats(mod1, title = \"one sample t-test\"), ggcoefstats(mod2, title = \"independent t-test\"), ggcoefstats(mod3, title = \"paired t-test\"), ggcoefstats(mod4, title = \"correlation\"), ggcoefstats(mod5, title = \"contingency table\", effectsize.type = \"cramers_v\"), ggcoefstats(mod6, title = \"anova\"), ggcoefstats(mod7, title = \"regression-1\"), ggcoefstats(mod8, title = \"meta-analysis\"), ggcoefstats(mod9, title = \"proportion test\") ), annotation.args = list(title = \"Example from `{BayesFactor}` package\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"regression-models-with-list-outputs","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"Regression models with list outputs","title":"ggcoefstats","text":"Note number regression models return object class list, case function fail. often can extract object interest list use plot regression coefficients.","code":"library(gamm4) # data dat <- gamSim(1, n = 400, scale = 2) # now add 20 level random effect `fac'... dat$fac <- fac <- as.factor(sample(1:20, 400, replace = TRUE)) dat$y <- dat$y + model.matrix(~ fac - 1) %*% rnorm(20) * .5 # model object br <- gamm4::gamm4( formula = y ~ s(x0) + x1 + s(x2), data = dat, random = ~ (1 | fac) ) # looking at the classes of the objects contained in the list purrr::map(br, class) combine_plots( plotlist = list( # first object plot (only parametric terms are shown) ggcoefstats( x = br$gam, title = \"generalized additive model (parametric terms)\", digits = 3 ), # second object plot ggcoefstats( x = br$mer, title = \"linear mixed-effects model\", digits = 3 ) ), plotgrid.args = list(nrow = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"meta-analysis","dir":"Articles > Web_only","previous_headings":"","what":"Meta-analysis","title":"ggcoefstats","text":"case estimates displaying come multiple studies, can also use function carry random-effects meta-analysis. data frame enter must contain minimum following three columns- term: column names/identifiers annotate study/effect estimate: column observed effect sizes outcomes std.error: column corresponding standard errors","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"parametric","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"parametric","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, bf.message = TRUE, meta.type = \"parametric\", title = \"parametric random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"robust","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"robust","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, meta.type = \"robust\", title = \"robust random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"bayesian","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"Bayesian","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, meta.type = \"bayes\", title = \"Bayesian random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"data-frames","dir":"Articles > Web_only","previous_headings":"","what":"Data frames","title":"ggcoefstats","text":"Sometimes don’t model object custom data frame want display using function. data frame plotted, must contain columns named term (names predictors), estimate (corresponding estimates coefficients quantities interest). optional columns conf.low conf.high (confidence intervals), p.value. also specify type statistic relevant regression models (\"t\", \"z\", \"f\", \"chi\") case want display statistical labels. can also provide data frame containing relevant information additionally displaying labels statistical information.","code":"# let's create a data frame df_full <- tibble::tribble( ~term, ~statistic, ~estimate, ~std.error, ~p.value, ~df.error, \"study1\", 0.158, 0.0665, 0.778, 0.875, 5L, \"study2\", 1.33, 0.542, 0.280, 0.191, 10L, \"study3\", 1.24, 0.045, 0.030, 0.001, 12L, \"study4\", 0.156, 0.500, 0.708, 0.885, 8L, \"study5\", 0.33, 0.032, 0.280, 0.101, 2L, \"study6\", 1.04, 0.085, 0.030, 0.001, 3L ) ggcoefstats( x = df_full, meta.analytic.effect = TRUE, statistic = \"t\", package = \"LaCroixColoR\", palette = \"paired\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"non-plot-outputs","dir":"Articles > Web_only","previous_headings":"","what":"Non-plot outputs","title":"ggcoefstats","text":"function can also used extract outputs plot, although much preferable use underlying functions instead (parameters::model_parameters).","code":"# data DNase1 <- subset(DNase, Run == 1) # using a selfStart model nlmod <- stats::nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1) # data frames ggcoefstats(nlmod) %>% extract_stats() #> $subtitle_data #> NULL #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> # A tibble: 3 × 11 #> term estimate std.error conf.level conf.low conf.high statistic df.error #> #> 1 Asym 2.35 0.0782 0.95 2.18 2.51 30.0 13 #> 2 xmid 1.48 0.0814 0.95 1.31 1.66 18.2 13 #> 3 scal 1.04 0.0323 0.95 0.972 1.11 32.3 13 #> p.value conf.method expression #> #> 1 2.17e-13 Wald #> 2 1.22e-10 Wald #> 3 8.51e-14 Wald #> #> $glance_data #> # A tibble: 0 × 0 #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggcoefstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"not-supported","dir":"Articles > Web_only","previous_headings":"","what":"Not supported","title":"ggcoefstats","text":"vignette supposed give comprehensive account regression models supported ggcoefstats. list supported models keep expanding additional tidiers added parameters performance packages. Note models supported packages supported ggcoefstats(). particular, classes objects column estimate (e.g., kmeans, optim, muhaz, survdiff, zoo, etc.) supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggcoefstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"correlation-matrix-plot-with-ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"Correlation matrix plot with ggcorrmat()","title":"ggcorrmat","text":"first example, use gapminder dataset (available eponymous package CRAN) provides values life expectancy, Gross Domestic Product (GDP) per capita, population, every five years, 1952 2007, 142 countries collected Gapminder Foundation. Let’s look data- Let’s say interested studying correlation population country, average life expectancy, GDP per capita across countries year 2007. simplest way get correlation matrix stick defaults- plot can modified additional arguments- seen correlation matrix, although relationship population life expectancy worldwide, least 2007, strong positive relationship GDP, well-established indicator country’s economic performance. Given three variables, doesn’t look impressive. let’s work another example ggplot2 package: diamonds dataset. dataset contains prices attributes almost 54,000 diamonds. Let’s look data- Let’s see correlation matrix different attributes diamond price. can make number changes basic correlation matrix. example, since interested relationship price attributes, let’s make price column first column. seen , unsurprisingly, strongest predictor diamond price carat value, unit mass equal 200 mg. words, heavier diamond, expensive going .","code":"library(gapminder) library(dplyr) dplyr::glimpse(gapminder) #> Rows: 1,704 #> Columns: 6 #> $ country \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", … #> $ continent Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, … #> $ year 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, … #> $ lifeExp 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8… #> $ pop 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12… #> $ gdpPercap 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, … ## select data only from the year 2007 gapminder_2007 <- dplyr::filter(gapminder::gapminder, year == 2007) ## producing the correlation matrix ggcorrmat( data = gapminder_2007, ## data from which variable is to be taken cor.vars = lifeExp:gdpPercap ## specifying correlation matrix variables ) ggcorrmat( data = gapminder_2007, ## data from which variable is to be taken cor.vars = lifeExp:gdpPercap, ## specifying correlation matrix variables cor.vars.names = c( \"Life Expectancy\", \"population\", \"GDP (per capita)\" ), type = \"np\", ## which correlation coefficient is to be computed lab.col = \"red\", ## label color ggtheme = ggplot2::theme_light(), ## selected ggplot2 theme ## turn off default ggestatsplot theme overlay matrix.type = \"lower\", ## correlation matrix structure colors = NULL, ## turning off manual specification of colors palette = \"category10_d3\", ## choosing a color palette package = \"ggsci\", ## package to which color palette belongs title = \"Gapminder correlation matrix\", ## custom title subtitle = \"Source: Gapminder Foundation\" ## custom subtitle ) library(ggplot2) dplyr::glimpse(ggplot2::diamonds) #> Rows: 53,940 #> Columns: 10 #> $ carat 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, 0.23, 0.… #> $ cut Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver… #> $ color E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, J, J, I,… #> $ clarity SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI1, VS1, … #> $ depth 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64… #> $ table 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58… #> $ price 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34… #> $ x 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4.… #> $ y 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4.… #> $ z 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2.… ## let's use just 5% of the data to speed it up ggcorrmat( data = dplyr::sample_frac(ggplot2::diamonds, size = 0.05), cor.vars = c(carat, depth:z), ## note how the variables are getting selected cor.vars.names = c( \"carat\", \"total depth\", \"table\", \"price\", \"length (in mm)\", \"width (in mm)\", \"depth (in mm)\" ), ggcorrplot.args = list(outline.color = \"black\", hc.order = TRUE) ) ## let's use just 5% of the data to speed it up ggcorrmat( data = dplyr::sample_frac(ggplot2::diamonds, size = 0.05), cor.vars = c(price, carat, depth:table, x:z), ## note how the variables are getting selected cor.vars.names = c( \"price\", \"carat\", \"total depth\", \"table\", \"length (in mm)\", \"width (in mm)\", \"depth (in mm)\" ), type = \"np\", title = \"Relationship between diamond attributes and price\", subtitle = \"Dataset: Diamonds from ggplot2 package\", colors = c(\"#0072B2\", \"#D55E00\", \"#CC79A7\"), pch = \"square cross\", ## additional aesthetic arguments passed to `ggcorrmat()` ggcorrplot.args = list( lab_col = \"yellow\", lab_size = 6, tl.srt = 90, pch.col = \"white\", pch.cex = 14 ) ) + ## modification outside `{ggstatsplot}` using `{ggplot2}` functions ggplot2::theme( axis.text.x = ggplot2::element_text( margin = ggplot2::margin(t = 0.15, r = 0.15, b = 0.15, l = 0.15, unit = \"cm\") ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"grouped-analysis-with-grouped_ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggcorrmat","title":"ggcorrmat","text":"want analysis separately quality diamond cut (Fair, Good, Good, Premium, Ideal)? ggstatsplot provides special helper function instances: grouped_ggcorrmat(). merely wrapper function around combine_plots(). applies ggcorrmat() across levels specified grouping variable combines list individual plots single plot. Note function also makes easy run correlation matrix across different levels factor/grouping variable.","code":"grouped_ggcorrmat( ## arguments relevant for `ggcorrmat()` data = ggplot2::diamonds, cor.vars = c(price, carat, depth), grouping.var = cut, ## arguments relevant for `combine_plots()` plotgrid.args = list(nrow = 3), annotation.args = list( tag_levels = \"a\", title = \"Relationship between diamond attributes and price across cut\", caption = \"Dataset: Diamonds from ggplot2 package\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"data-frame","dir":"Articles > Web_only","previous_headings":"","what":"Data frame","title":"ggcorrmat","text":"want data frame (grouped) correlation matrix, use correlation::correlation() instead. can also grouped analysis used output dplyr::group_by().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"grouped-analysis-with-ggcorrmat-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggcorrmat() + {purrr}","title":"ggcorrmat","text":"Although grouped_ function good quickly exploring data, reduces flexibility function can used. common parameters used applied plots corresponding levels grouping variable way customize arguments different levels grouping variable. see can done using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggcorrmat","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggcorrmat","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"distribution-of-a-sample-with-ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"Distribution of a sample with ggdotplotstats","title":"ggdotplotstats","text":"Let’s begin simple example ggplot2 package (ggplot2::mpg), subset fuel economy data EPA makes available http://fueleconomy.gov. Let’s say want visualize distribution mileage car manufacturer.","code":"## looking at the structure of the data using glimpse dplyr::glimpse(ggplot2::mpg) #> Rows: 234 #> Columns: 11 #> $ manufacturer \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"… #> $ model \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4 quattro\", \"… #> $ displ 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, 2.… #> $ year 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 200… #> $ cyl 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, … #> $ trans \"auto(l5)\", \"manual(m5)\", \"manual(m6)\", \"auto(av)\", \"auto… #> $ drv \"f\", \"f\", \"f\", \"f\", \"f\", \"f\", \"f\", \"4\", \"4\", \"4\", \"4\", \"4… #> $ cty 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17, 1… #> $ hwy 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25, 2… #> $ fl \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p… #> $ class \"compact\", \"compact\", \"compact\", \"compact\", \"compact\", \"c… ## removing factor level with very few no. of observations df <- dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")) ## creating a vector of colors using `paletteer` package paletter_vector <- paletteer::paletteer_d( palette = \"palettetown::venusaur\", n = nlevels(as.factor(df$manufacturer)), type = \"discrete\" ) ggdotplotstats( data = df, x = cty, y = manufacturer, xlab = \"city miles per gallon\", ylab = \"car manufacturer\", test.value = 15.5, point.args = list( shape = 16, color = paletter_vector, size = 5 ), title = \"Distribution of mileage of cars\", ggtheme = ggplot2::theme_dark() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"grouped-analysis-with-grouped_ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggdotplotstats","title":"ggdotplotstats","text":"want analysis separately different engines different numbers cylinders? ggstatsplot provides special helper function instances: grouped_ggdotplotstats. merely wrapper function around combine_plots. applies ggdotplotstats across levels specified grouping variable combines individual plots single plot. Let’s see can use function apply ggdotplotstats accomplish task.","code":"## removing factor level with very few no. of observations df <- dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")) grouped_ggdotplotstats( ## arguments relevant for ggdotplotstats data = df, grouping.var = cyl, ## grouping variable x = cty, y = manufacturer, xlab = \"city miles per gallon\", ylab = \"car manufacturer\", type = \"bayes\", ## Bayesian test test.value = 15.5, ## arguments relevant for `combine_plots` annotation.args = list(title = \"Fuel economy data\"), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"grouped-analysis-with-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with {purrr}","title":"ggdotplotstats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate test.value argument gender, possible grouped_ggdotplotstats. cases like , run separate kinds tests (robust , parametric , Bayesian levels group) better use purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggdotplotstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggdotplotstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Student’s t-test revealed , across 5 experiments, speed light significantly different posited speed. effect size (g=1.22)(g = 1.22) large, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.46 times probable alternative hypothesis compared null hypothesis. can considered moderate evidence (Jeffreys, 1961) favor alternative hypothesis.","code":"ggdotplotstats(morley, Speed, Expt, test.value = 800)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggdotplotstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"statistical-analysis-with-gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"Statistical analysis with gghistostats","title":"gghistostats","text":"Let’s begin simple example psych package (psych::sat.act), sample 700 self-reported scores SAT Verbal, SAT Quantitative ACT tests. ACT composite scores may range 1 - 36. National norms mean 20. get simple histogram statistics special information. gghistostats default choose binwidth max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data since histograms sensitive binwidth. Let’s display national norms (labeled “Test”) test hypothesis sample mean national population mean 20 using parametric one sample t-test (type = \"p\"). gghistostats computed Bayes Factors quantify likelihood research (BF10) null hypothesis (BF01). current example, Bayes Factor value provides strong evidence (Kass Rafferty, 1995) favor research hypothesis: ACT scores much higher national average. log(Bayes factor) 492.5 means odds 7.54e+213:1 sample different.","code":"## loading needed libraries library(psych) library(dplyr) ## looking at the structure of the data using glimpse dplyr::glimpse(psych::sat.act) #> Rows: 700 #> Columns: 6 #> $ gender 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, … #> $ education 3, 3, 3, 4, 2, 5, 5, 3, 4, 5, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, … #> $ age 19, 23, 20, 27, 33, 26, 30, 19, 23, 40, 23, 34, 32, 41, 20, … #> $ ACT 24, 35, 21, 26, 31, 28, 36, 22, 22, 35, 32, 29, 21, 35, 27, … #> $ SATV 500, 600, 480, 550, 600, 640, 610, 520, 400, 730, 760, 710, … #> $ SATQ 500, 500, 470, 520, 550, 640, 500, 560, 600, 800, 710, 600, … gghistostats( data = psych::sat.act, ## data from which variable is to be taken x = ACT, ## numeric variable xlab = \"ACT Score\", ## x-axis label title = \"Distribution of ACT Scores\", ## title for the plot test.value = 20, ## test value caption = \"Data courtesy of: SAPA project (https://sapa-project.org)\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"grouped-analysis-with-grouped_gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_gghistostats","title":"gghistostats","text":"want analysis separately gender? ggstatsplot provides special helper function instances: grouped_gghistostats. merely wrapper function around combine_plots. applies gghistostats across levels specified grouping variable combines individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s see can use function apply gghistostats accomplish task. can seen plots, mean value much higher national norm. Additionally, see benefits plotting data separately gender. can see differences distributions.","code":"grouped_gghistostats( ## arguments relevant for gghistostats data = psych::sat.act, x = ACT, ## same outcome variable xlab = \"ACT Score\", grouping.var = gender, ## grouping variable males = 1, females = 2 type = \"robust\", ## robust test: one-sample percentile bootstrap test.value = 20, ## test value against which sample mean is to be compared centrality.line.args = list(color = \"#D55E00\", linetype = \"dashed\"), # ggtheme = ggthemes::theme_stata(), ## changing default theme ## turn off ggstatsplot theme layer ## arguments relevant for combine_plots annotation.args = list( title = \"Distribution of ACT scores across genders\", caption = \"Data courtesy of: SAPA project (https://sapa-project.org)\" ), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"grouped-analysis-with-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with {purrr}","title":"gghistostats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate test.value argument gender, possible grouped_gghistostats. cases like , run separate kinds tests (robust , parametric , Bayesian levels group) better use purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"gghistostats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"gghistostats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Student’s t-test revealed , across 31 felled black cherry trees, although height higher expected height 75 ft., effect statistically significant. effect size (g=0.15)(g = 0.15) small, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.67 times probable null hypothesis compared alternative hypothesis. can considered moderate evidence (Jeffreys, 1961) favor null hypothesis.","code":"gghistostats(trees, Height, test.value = 75)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"gghistostats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"introduction-to-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Introduction to ggpiestats","title":"ggpiestats","text":"function ggpiestats can used quick data exploration /prepare publication-ready pie charts summarize statistical relationship(s) among one categorical variables. see examples use function vignette. begin , instances want use ggpiestats- check proportion observations matches hypothesized proportion, typically known “Goodness Fit” test see frequency distribution two categorical variables independent using contingency table analysis check proportion observations level categorical variable equal Note: following demo uses pipe operator (%>%), familiar operator, good explanation: http://r4ds..co.nz/pipes.html. ggpiestats works data organized data frames tibbles. work data structures like base-R tables matrices. can operate data frames organized one row per observation data frames one column containing counts. vignette provides examples (see examples ). help demonstrate ggpiestats can used categorical (also known nominal) data, modified version original Titanic dataset (datasets library) provided ggstatsplot package name Titanic_full. Titanic Passenger Survival Dataset provides information “fate passengers fatal maiden voyage ocean liner Titanic, including economic status (class), sex, age, survival.” Let’s look structure .","code":"# looking at the original data in tabular format dplyr::glimpse(Titanic) #> 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ... #> - attr(*, \"dimnames\")=List of 4 #> ..$ Class : chr [1:4] \"1st\" \"2nd\" \"3rd\" \"Crew\" #> ..$ Sex : chr [1:2] \"Male\" \"Female\" #> ..$ Age : chr [1:2] \"Child\" \"Adult\" #> ..$ Survived: chr [1:2] \"No\" \"Yes\" # looking at the dataset as a tibble or data frame dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"goodness-of-fit-with-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Goodness of Fit with ggpiestats","title":"ggpiestats","text":"simplest use case ggpiestats want display information one categorical nominal variable. part display plot, may also choose execute chi-squared goodness fit test see whether proportions (percentages) categories single variable appear line hypothesis model. start simple expand, let’s say ’d like display piechart percentages passengers survive. initial hypothesis different flipping coin. People 50/50 chance surviving. Note: equal proportions per category default, e.g. 50/50, can specify hypothesized ratio like ratio hypothesis 80% died 20% survived add ratio = c(.80,.20) entered code.","code":"ggpiestats( data = Titanic_full, x = Survived, title = \"Passenger survival on the Titanic\", caption = \"Source: Titanic survival dataset\", legend.title = \"Survived?\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"independence-or-association-with-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Independence (or association) with ggpiestats","title":"ggpiestats","text":"Let’s next investigate whether passenger’s gender independent , associated , gender. test whether proportion people survived different sexes using ggpiestats. plot clearly shows survival rates different males females. Pearson’s χ2\\chi^2-test independence significant given large sample size. Additionally, females males, survival rates significantly different 50% indicated goodness fit test gender.","code":"ggpiestats( data = Titanic_full, x = Survived, y = Sex ) + # further modification with `{ggplot2}` commands ggplot2::theme( plot.title = ggplot2::element_text( color = \"black\", size = 14, hjust = 0 ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"grouped-analysis-with-grouped_ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggpiestats","title":"ggpiestats","text":"want analysis gender also factor passenger’s age (Age)? information classifies passengers Child Adult, perhaps makes difference survival rate? ggstatsplot provides special helper function instances: grouped_ggpiestats. convenient wrapper function around combine_plots. applies ggpiestats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. resulting pie charts statistics make story clear. adults gender much matters. Women survived much higher rates men. children gender significantly associated survival male female children survival rate significantly different 50/50.","code":"grouped_ggpiestats( # arguments relevant for `ggpiestats()` data = Titanic_full, x = Survived, y = Sex, grouping.var = Age, digits.perc = 1, package = \"ggsci\", palette = \"category10_d3\", # arguments relevant for `combine_plots()` title.text = \"Passenger survival on the Titanic by gender and age\", caption.text = \"Asterisks denote results from proportion tests; \\n***: p < 0.001, ns: non-significant\", plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"grouped-analysis-with-ggpiestats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggpiestats + {purrr}","title":"ggpiestats","text":"Although grouped_ggpiestats provides quick way explore data, leaves much desired. example, may want add different captions, titles, themes, palettes level grouping variable, etc. cases like , better use purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"working-with-data-organized-by-counts","dir":"Articles > Web_only","previous_headings":"","what":"Working with data organized by counts","title":"ggpiestats","text":"ggpiestats can also work data frame containing counts (aka tabled data), .e., row doesn’t correspond unique observation. example, consider following notional fishing data frame containing data two boats (B) number different types fish caught months February March. data frame, row corresponds unique combination Boat Month. data organized way, make slightly different call ggpiestats() function: use counts argument. want investigate relationship type fish month (test independence), command : results support hypothesis type fish caught related month ’re fishing. χ2\\chi^2 independence test results top plot. February, catch significantly Cod hypothesize equal distribution. Whereas, March, results indicate ’s strong evidence distribution isn’t equal.","code":"# (this is completely fictional; I don't know first thing about fishing!) fishing <- tibble::as_tibble(data.frame( Boat = c(rep(\"B\", 4), rep(\"A\", 4), rep(\"A\", 4), rep(\"B\", 4)), Month = c(rep(\"February\", 2), rep(\"March\", 2), rep(\"February\", 2), rep(\"March\", 2)), Fish = c( \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\", \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\" ), SumOfCaught = c(25, 20, 35, 40, 40, 25, 30, 42, 40, 30, 33, 26, 100, 30, 20, 20) )) fishing #> # A tibble: 16 × 4 #> Boat Month Fish SumOfCaught #> #> 1 B February Bass 25 #> 2 B February Catfish 20 #> 3 B March Cod 35 #> 4 B March Haddock 40 #> 5 A February Cod 40 #> 6 A February Haddock 25 #> 7 A March Bass 30 #> 8 A March Catfish 42 #> 9 A February Bass 40 #> 10 A February Catfish 30 #> 11 A March Cod 33 #> 12 A March Haddock 26 #> 13 B February Cod 100 #> 14 B February Haddock 30 #> 15 B March Bass 20 #> 16 B March Catfish 20 ggpiestats( data = fishing, x = Fish, y = Month, counts = SumOfCaught, label = \"both\", package = \"ggsci\", palette = \"default_jama\", title = \"Type fish caught by month\", caption = \"Source: completely made up\", legend.title = \"Type fish caught: \" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggpiestats","text":"Let’s imagine ’re conducting clinical trials new imaginary wonder drug. 134 subjects entering trial. enter healthy (n = 96), enter trial already sick (n = 38). receive treatment intervention. check back month see healthy sick. classic pre/post experimental design. ’re interested seeing change groupings. case within-subjects designs, can set paired = TRUE, display results McNemar test subtitle. (Note: forget set paired = TRUE, results inaccurate.) results bode well experimental wonder drug. 96 started healthy 4% sick month. Ideally, hoped zero reality seldom perfect. side 38 started sick number reduced just 13 34% marked improvement.","code":"# create imaginary data clinical_trial <- tibble::tribble( ~SickBefore, ~SickAfter, ~Counts, \"No\", \"Yes\", 4, \"Yes\", \"No\", 25, \"Yes\", \"Yes\", 13, \"No\", \"No\", 92 ) ggpiestats( data = clinical_trial, x = SickAfter, y = SickBefore, counts = Counts, paired = TRUE, label = \"both\", title = \"Results from imaginary clinical trial\", package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggpiestats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggpiestats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s χ2\\chi^2-test independence revealed , across 32 automobiles, showed significant association transmission engine number cylinders. Bayes Factor analysis revealed data 16.78 times probable alternative hypothesis compared null hypothesis. can considered strong evidence (Jeffreys, 1961) favor alternative hypothesis. Similar reporting style can followed function performs one-sample goodness--fit test instead χ2\\chi^2-test. holds true ggbarstats.","code":"ggpiestats(mtcars, am, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggpiestats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"correlation-plot-with-ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"Correlation plot with ggscatterstats","title":"ggscatterstats","text":"illustrate function can used, rely ggplot2movies dataset. dataset provides information movies scraped IMDB. Specifically, using cleaned version dataset included ggstatsplot package . Now clean dataset, can start asking interesting questions. example, let’s see average IMDB rating movie relationship budget. Additionally, let’s also see movies high budget low IMDB rating labeling data points. reduce processing time, let’s work 30% dataset. indeed small, significant, positive correlation amount money studio invests movie ratings given audiences.","code":"## see the selected data (we have data from 1813 movies) dplyr::glimpse(movies_long) #> Rows: 1,579 #> Columns: 8 #> $ title \"Shawshank Redemption, The\", \"Lord of the Rings: The Return of … #> $ year 1994, 2003, 2001, 2002, 1994, 1993, 1977, 1980, 1968, 2002, 196… #> $ length 142, 251, 208, 223, 168, 195, 125, 129, 158, 135, 93, 113, 108,… #> $ budget 25.0, 94.0, 93.0, 94.0, 8.0, 25.0, 11.0, 18.0, 5.0, 3.3, 1.8, 5… #> $ rating 9.1, 9.0, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.7, 8.7, 8.7, 8.7, 8.6… #> $ votes 149494, 103631, 157608, 114797, 132745, 97667, 134640, 103706, … #> $ mpaa R, PG-13, PG-13, PG-13, R, R, PG, PG, PG-13, R, PG, R, R, R, R,… #> $ genre Drama, Action, Action, Action, Drama, Drama, Action, Action, Dr… ggscatterstats( data = movies_long, ## data frame from which variables are taken x = budget, ## predictor/independent variable y = rating, ## dependent variable xlab = \"Budget (in millions of US dollars)\", ## label for the x-axis ylab = \"Rating on IMDB\", ## label for the y-axis label.var = title, ## variable to use for labeling data points label.expression = rating < 5 & budget > 100, ## expression for deciding which points to label point.label.args = list(alpha = 0.7, size = 4, color = \"grey50\"), xfill = \"#CC79A7\", ## fill for marginals on the x-axis yfill = \"#009E73\", ## fill for marginals on the y-axis title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"grouped-analysis-with-grouped_ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggscatterstats","title":"ggscatterstats","text":"want analysis analysis movies different MPAA (Motion Picture Association America) film ratings (NC-17, PG, PG-13, R)? ggstatsplot provides special helper function instances: grouped_ggstatsplot. merely wrapper function around combine_plots. applies ggstatsplot across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s see can use function apply ggscatterstats MPAA ratings. Also, let’s run robust test time. seen plot, analysis revealed something interesting: relationship found budget IMDB rating holds PG-13 R-rated movies.","code":"grouped_ggscatterstats( ## arguments relevant for ggscatterstats data = movies_long, x = budget, y = rating, grouping.var = mpaa, label.var = title, label.expression = rating < 5 & budget > 80, type = \"r\", # ggtheme = ggthemes::theme_tufte(), ## arguments relevant for combine_plots annotation.args = list( title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" ), plotgrid.args = list(nrow = 3, ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"grouped-analysis-with-ggscatterstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggscatterstats + {purrr}","title":"ggscatterstats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate type marginal distribution plot MPAA rating wanted use different types correlations across different levels MPAA ratings (NC-17 6 movies, robust correlation good idea), possible. can easily done using purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggscatterstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggscatterstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s correlation test revealed , across 32 cars, measure acceleration (1/4 mile time; qsec) positively correlated rear axle ratio (drat), effect statistically significant. effect size (r=0.09)(r = 0.09) small, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.32 times probable null hypothesis compared alternative hypothesis. can considered moderate evidence (Jeffreys, 1961) favor null hypothesis (absence correlation two variables).","code":"ggscatterstats(mtcars, qsec, drat)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggscatterstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"comparisons-between-groups-with-ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"Comparisons between groups with ggwithinstats","title":"ggwithinstats","text":"illustrate function can used, use bugs dataset throughout vignette. data set, “Bugs”, provides extent men women want kill arthropods vary freighteningness (low, high) disgustingness (low, high). participant rates attitudes towards anthropods. Subset data reported Ryan et al. (2013). Note repeated measures design participant gave four different ratings across four different conditions (LDLF, LDHF, HDLF, HDHF). Suppose first thing want inspect distribution desire kill across conditions (disregarding factorial structure experiment). also want know mean differences desire across conditions statistically significant. simplest form function call - Note: function automatically decides whether dependent samples test preferred (2 groups) ANOVA (3 groups). based number levels grouping variable. output function ggplot object means can modified ggplot2 functions. can seen plot, function default returns Bayes Factor test. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayes Factor values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF10)log_{e}(BF_{01}) = - log_{e}(BF_{10})). can make output much aesthetically pleasing well informative making use many optional parameters ggwithinstats. ’ll add title caption, better x y axis labels. can change overall theme well color palette use. can appreciated effect size (partial eta squared) 0.18, small differences mean desire kill across conditions. Importantly, plot also helps us appreciate distributions within given condition. far used classic parametric test, can also use available options: type (test) argument also accepts following abbreviations: \"p\" (parametric), \"np\" (nonparametric), \"r\" (robust), \"bf\" (Bayes Factor). Let’s use combine_plots function make one plot four separate plots demonstrates options. Let’s compare desire kill bugs low versus high disgust conditions see much difference whether bug disgusting-looking makes desire kill bug. generate plots one one use combine_plots merge one plot common labeling. possible, necessarily recommended, make plot different colors themes. example,","code":"ggwithinstats( data = bugs_long, x = condition, y = desire ) ggwithinstats( data = bugs_long, x = condition, y = desire, type = \"nonparametric\", ## type of statistical test xlab = \"Condition\", ## label for the x-axis ylab = \"Desire to kill an artrhopod\", ## label for the y-axis package = \"yarrr\", ## package from which color palette is to be taken palette = \"info2\", ## choosing a different color palette title = \"Comparison of desire to kill bugs\", caption = \"Source: Ryan et al., 2013\" ) + ## modifying the plot further ggplot2::scale_y_continuous( limits = c(0, 10), breaks = seq(from = 0, to = 10, by = 1) ) ## selecting subset of the data df_disgust <- dplyr::filter(bugs_long, condition %in% c(\"LDHF\", \"HDHF\")) ## parametric t-test p1 <- ggwithinstats( data = df_disgust, x = condition, y = desire, type = \"p\", effsize.type = \"d\", conf.level = 0.99, title = \"Parametric test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## Mann-Whitney U test (nonparametric test) p2 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"np\", conf.level = 0.99, title = \"Non-parametric Test\", package = \"ggsci\", palette = \"uniform_startrek\" ) ## robust t-test p3 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"r\", conf.level = 0.99, title = \"Robust Test\", package = \"wesanderson\", palette = \"Royal2\" ) ## Bayes Factor for parametric t-test p4 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"bayes\", title = \"Bayesian Test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## combining the individual plots into a single plot combine_plots( plotlist = list(p1, p2, p3, p4), plotgrid.args = list(nrow = 2), annotation.args = list( title = \"Effect of disgust on desire to kill bugs \", caption = \"Source: Bugs dataset from `jmv` R package\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"grouped-analysis-with-grouped_ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggwithinstats","title":"ggwithinstats","text":"want carry analysis region (gender)? ggstatsplot provides special helper function instances: grouped_ggwithinstats. merely wrapper function around combine_plots. applies ggwithinstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s focus two regions years: 1967, 1987, 2007. Also, let’s carry pairwise comparisons see differences every pair continents.","code":"grouped_ggwithinstats( ## arguments relevant for ggwithinstats data = bugs_long, x = condition, y = desire, grouping.var = gender, xlab = \"Continent\", ylab = \"Desire to kill bugs\", type = \"nonparametric\", ## type of test pairwise.display = \"significant\", ## display only significant pairwise comparisons p.adjust.method = \"BH\", ## adjust p-values for multiple tests using this method # ggtheme = ggthemes::theme_tufte(), package = \"ggsci\", palette = \"default_jco\", digits = 3, ## arguments relevant for combine_plots annotation.args = list(title = \"Desire to kill bugs across genders\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"grouped-analysis-with-ggwithinstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggwithinstats + {purrr}","title":"ggwithinstats","text":"Although grouping function provides quick way explore data, leaves much desired. example, type test theme applied genders, maybe want change different genders, maybe want gave different effect sizes different years. type customization different levels grouping variable possible grouped_ggwithinstats, can easily achieved using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"between-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Between-subjects designs","title":"ggwithinstats","text":"independent measures designs, ggbetweenstats function can used: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggwithinstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggwithinstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Fisher’s repeated measures one-way ANOVA revealed , across 22 friends taste three wines, statistically significant difference across persons preference wine. effect size (ωp=0.02)(\\omega_{p} = 0.02) medium, per Field’s (2013) conventions. Bayes Factor analysis revealed data 8.25 times probable alternative hypothesis compared null hypothesis. can considered moderate evidence (Jeffreys, 1961) favor alternative hypothesis. global effect carried post hoc pairwise t-tests, revealed Wine C preferred across participants least desirable compared Wines B. Similar reporting style can followed function performs t-test instead one-way ANOVA.","code":"library(WRS2) # for data ggwithinstats(WineTasting, Wine, Taste)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggwithinstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"introduction","dir":"Articles > Web_only","previous_headings":"","what":"Introduction","title":"Pairwise comparisons with `{ggstatsplot}`","text":"Pairwise comparisons ggstatsplot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"summary-of-types-of-statistical-analyses","dir":"Articles > Web_only","previous_headings":"","what":"Summary of types of statistical analyses","title":"Pairwise comparisons with `{ggstatsplot}`","text":"Following table contains brief summary currently supported pairwise comparison tests-","code":""},{"path":[]},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"data-frame-outputs","dir":"Articles > Web_only","previous_headings":"","what":"Data frame outputs","title":"Pairwise comparisons with `{ggstatsplot}`","text":"See data frame outputs .","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"example-1-between-subjects","dir":"Articles > Web_only","previous_headings":"Using pairwise_comparisons() with ggsignif","what":"Example-1: between-subjects","title":"Pairwise comparisons with `{ggstatsplot}`","text":"","code":"library(ggplot2) library(ggsignif) ## converting to factor mtcars$cyl <- as.factor(mtcars$cyl) ## creating a basic plot p <- ggplot(mtcars, aes(cyl, wt)) + geom_boxplot() ## using `pairwise_comparisons()` package to create a data frame with results df <- pairwise_comparisons(mtcars, cyl, wt) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) df #> # A tibble: 3 × 10 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression groups #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell ## using `geom_signif` to display results ## (note that you can choose not to display all comparisons) p + ggsignif::geom_signif( comparisons = list(df$groups[[1]]), annotations = as.character(df$expression)[[1]], test = NULL, na.rm = TRUE, parse = TRUE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"example-2-within-subjects","dir":"Articles > Web_only","previous_headings":"Using pairwise_comparisons() with ggsignif","what":"Example-2: within-subjects","title":"Pairwise comparisons with `{ggstatsplot}`","text":"","code":"library(ggplot2) library(ggsignif) ## creating a basic plot p <- ggplot(WRS2::WineTasting, aes(Wine, Taste)) + geom_boxplot() ## using `pairwise_comparisons()` package to create a data frame with results df <- pairwise_comparisons( WRS2::WineTasting, Wine, Taste, subject.id = Taster, type = \"bayes\", paired = TRUE ) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) df #> # A tibble: 3 × 19 #> group1 group2 term effectsize estimate conf.level conf.low #> #> 1 Wine A Wine B Difference Bayesian t-test 0.00721 0.95 -0.0418 #> 2 Wine A Wine C Difference Bayesian t-test 0.0755 0.95 0.0127 #> 3 Wine B Wine C Difference Bayesian t-test 0.0693 0.95 0.0303 #> conf.high pd prior.distribution prior.location prior.scale bf10 #> #> 1 0.0562 0.624 cauchy 0 0.707 0.235 #> 2 0.140 0.990 cauchy 0 0.707 3.71 #> 3 0.110 1.00 cauchy 0 0.707 50.5 #> conf.method log_e_bf10 n.obs expression test groups #> #> 1 ETI -1.45 22 Student's t #> 2 ETI 1.31 22 Student's t #> 3 ETI 3.92 22 Student's t ## using `geom_signif` to display results p + ggsignif::geom_signif( comparisons = df$groups, map_signif_level = TRUE, tip_length = 0.01, y_position = c(6.5, 6.65, 6.8), annotations = as.character(df$expression), test = NULL, na.rm = TRUE, parse = TRUE )"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"graphical-perception","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Graphical perception","title":"Graphic design and statistical reporting principles","text":"Graphical perception involves visual decoding encoded information graphs. ggstatsplot incorporates paradigm proposed ((Cleveland, 1985), Chapter 4) facilitate making visual judgments quantitative information effortless almost instantaneous. Based experiments, Cleveland proposes ten elementary graphical-perception tasks perform visually decode quantitative information graphs (organized least accurate; (Cleveland, 1985), p.254)- Position along common scale Position along identical, non-aligned scales Length Angle (Slope) Area Volume Color hue key principle Cleveland’s paradigm data display - “encode data graph visual decoding involves [graphical-perception] tasks high ordering possible.” example, decoding data point values ggbetweenstats requires position judgments along common scale: Note assessing differences mean values groups made easier help data points along common scale (Y-axis) labels. instances ggstatsplot diverges recommendations made Cleveland’s paradigm: categorical/nominal data, ggstatsplot uses pie charts rely angle judgments, less accurate (compared bar graphs, e.g., require position judgments). shortcoming assuaged degree using plenty labels describe percentages slices. makes angle judgment unnecessary pre-vacates concerns inaccurate judgments percentages. Additionally, also provides alternative function ggpiestats working categorical variables: ggbarstats. Pie charts don’t follow Cleveland’s paradigm data display rely less accurate angle judgments. ggstatsplot sidesteps issue always labelling percentages pie slices, makes angle judgments unnecessary. Cleveland’s paradigm also emphasizes superposition data better juxtaposition ((Cleveland, 1985), p.201) allows incisive comparison values different parts dataset. recommendation violated grouped_ variants function. Note range Y-axes longer across juxtaposed subplots visually comparing data becomes difficult. hand, superposed plot, data range coloring different parts makes visual discrimination different components data, comparison, easier. goal grouped_ variants functions show different aspects data also run statistical tests showing detailed results aspects data superposed plot difficult. Therefore, compromise ggstatsplot comfortable , least produce plots quick exploration different aspects data. Comparing different aspects data much accurate () plot, recommended Cleveland’s paradigm, () plot, implemented ggstatsplot package. displaying detailed results statistical tests difficult superposed plot. grouped_ plots follow Shrink Principle ((Tufte, 2001), p.166-7) high-information graphics, dictates data density size data matrix can maximized exploit maximum resolution available data-display technology. Given large maximum resolution afforded computer monitors today, saving grouped_ plots appropriate resolution ensures loss legibility reduced graphics area.","code":"ggbetweenstats( data = dplyr::filter( movies_long, genre %in% c(\"Action\", \"Action Comedy\", \"Action Drama\", \"Comedy\") ), x = genre, y = rating, title = \"IMDB rating by film genre\", xlab = \"Genre\", ylab = \"IMDB rating (average)\" ) ggpiestats( data = movies_long, x = genre, y = mpaa, title = \"Distribution of MPAA ratings by film genre\", legend.title = \"layout\" ) library(ggplot2) ## creating a smaller data frame df <- dplyr::filter(movies_long, genre %in% c(\"Comedy\", \"Drama\")) combine_plots( plotlist = list( # superposition ggplot(data = df, mapping = aes(x = length, y = rating, color = genre)) + geom_jitter(size = 3, alpha = 0.5) + geom_smooth(method = \"lm\") + labs(title = \"superposition (recommended in Cleveland's paradigm)\") + theme_ggstatsplot(), # juxtaposition grouped_ggscatterstats( data = df, x = length, y = rating, grouping.var = genre, marginal = FALSE, annotation.args = list(title = \"juxtaposition (`{ggstatsplot}` implementation in `grouped_` functions)\") ) ), ## combine for comparison annotation.args = list(title = \"Two ways to compare different aspects of data\"), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"graphical-excellence","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Graphical excellence","title":"Graphic design and statistical reporting principles","text":"Graphical excellence consists communicating complex ideas clarity way viewer understands greatest number ideas short amount time quoting data context. package follows principles graphical integrity (Tufte, 2001): physical representation numbers proportional numerical quantities represent. plot show means (ggbetweenstats) percentages (ggpiestats) proportional vertical distance area, respectively). important events data clear, detailed, thorough labeling plot shows ggbetweenstats labels means, sample size information, outliers, pairwise comparisons; can appreciated ggpiestats gghistostats plots. Note data labels data region designed way don’t interfere ability assess overall pattern data ((Cleveland, 1985); p.44-45). achieved using ggrepel package place labels way reduces visual prominence. None plots design variation (e.g., abrupt change scales) surface graphic can lead false impression variation data. number information-carrying dimensions never exceed number dimensions data (e.g., using area show one-dimensional data). plots designed chartjunk (like moiré vibrations, fake perspective, dark grid lines, etc.) ((Tufte, 2001), Chapter 5). instances ggstatsplot graphs don’t follow principles clean graphics, formulated Tufte theory data graphics ((Tufte, 2001), Chapter 4). theory four key principles: else show data. Maximize data-ink ratio. Erase non-data-ink. Erase redundant data-ink, within reason. particular, default plots ggstatsplot can sometimes violate one principles 2-4. According principles, every bit ink reason inclusion graphic convey new information viewer. , ink removed. One instance bilateral symmetry data measures. example, figure , can see box violin plots mirrored, consumes twice space graphic without adding new information. redundancy tolerated sake beauty symmetrical shapes can bring graphic. Even Tufte admits efficiency one consideration design statistical graphics ((Tufte, 2001), p. 137). Additionally, principles formulated era computer graphics yet revolutionize ease graphics produced thus concerns minimizing data-ink easier production graphics relevant .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"statistical-variation","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Statistical variation","title":"Graphic design and statistical reporting principles","text":"One important functions plot show variation data, comes two forms: Measurement noise: ggstatsplot, actual variation measurements shown plotting combination (jittered) raw data points boxplot laid top histogram. None plots, empirical distribution data concerned, show sample standard deviation poor conveying information limits sample presence outliers ((Cleveland, 1985), p.220). Distribution variable shown using gghistostats. Sample--sample statistic variation: Although, traditionally, variation shown using standard error mean (SEM) statistic, ggstatsplot plots instead use 95% confidence intervals. interval formed error bars correspond 68% confidence interval, particularly interesting interval ((Cleveland, 1985), p.222-225). Sample--sample variation regression estimates displayed using confidence intervals ggcoefstats().","code":"gghistostats( data = morley, x = Speed, test.value = 792, xlab = \"Speed of light (km/sec, with 299000 subtracted)\", title = \"Distribution of measured Speed of light\", caption = \"Note: Data collected across 5 experiments (20 measurements each)\" ) model <- lme4::lmer( formula = total.fruits ~ nutrient + rack + (nutrient | gen), data = lme4::Arabidopsis ) ggcoefstats(model)"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"data-requirements","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Data requirements","title":"Graphic design and statistical reporting principles","text":"extension ggplot2, ggstatsplot expectations structure data. specifically, data organized following principles tidy data, specify statistical structure data frame (variables observations) mapped physical structure (columns rows). specifically, tidy data means variables columns row corresponds unique observation ((Wickham, 2014)). ggstatsplot functions remove NAs variables interest (similar ggplot2; (Wickham, 2016), p.207) data display total sample size (n, either observations -subjects pairs within-subjects designs) subtitle inform user/reader number observations included statistical analysis visualization. , sample sizes differ across tests function, ggstatsplot makes effort inform user aspect. example, ggcorrmat features several correlation test pairs , depending variables given pair, sample sizes may vary. ggstatsplot functions remove NAs variables interest display total sample size , can give nuanced information sample sizes differs across tests. example, ggcorrmat display () one total sample size NAs present, () instead show minimum, median, maximum sample sizes across correlation tests NAs present across correlation variables.","code":"## creating a new dataset without any NAs in variables of interest msleep_no_na <- dplyr::filter( ggplot2::msleep, !is.na(sleep_rem), !is.na(awake), !is.na(brainwt), !is.na(bodywt) ) ## variable names vector var_names <- c(\"REM sleep\", \"time awake\", \"brain weight\", \"body weight\") ## combining two plots using helper function in `{ggstatsplot}` combine_plots( plotlist = purrr::pmap( .l = list(data = list(msleep_no_na, ggplot2::msleep)), .f = ggcorrmat, cor.vars = c(sleep_rem, awake:bodywt), cor.vars.names = var_names, colors = c(\"#B2182B\", \"white\", \"#4D4D4D\"), title = \"Correlalogram for mammals sleep dataset\", subtitle = \"sleep units: hours; weight units: kilograms\" ), plotgrid.args = list(nrow = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"statistical-reporting","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Statistical reporting","title":"Graphic design and statistical reporting principles","text":"combining statistical analysis data visualization helpful? list reasons - recent survey (Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 2016) revealed one eight papers major psychology journals contained grossly inconsistent p-value may affected statistical conclusion. ggstatsplot helps avoid reporting errors: Since plot statistical analysis yoked together, chances making error reporting results minimized. One need write results manually copy-paste different statistics software program (like SPSS, SAS, ). default setting ggstatsplot produce plots statistical details included. often , results displayed subtitle plot. Great care taken details included statistical reporting . APA guidelines (Association, 2009) followed default reporting statistical details: Percentages displayed decimal places. Correlations, t-tests, χ2\\chi^2-tests reported degrees freedom parentheses significance level. ANOVAs reported two degrees freedom significance level. Regression results presented unstandardized standardized estimate (beta), whichever specified user, along statistic (depending model, can t, F, z statistic) corresponding significance level. exception p-values, statistics rounded two decimal places default.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"dealing-with-null-results","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Dealing with null results:","title":"Graphic design and statistical reporting principles","text":"functions therefore default return Bayesian favor null hypothesis default. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayesian values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF01)log_{e}(BF_{01}) = - log_{e}(BF_{01})).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Graphic design and statistical reporting principles","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"why-use-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Why use {purrr}?","title":"Using 'ggstatsplot' with the 'purrr' package","text":"ggstatsplot functions grouped_ variants, designed quickly run ggstatsplot function across multiple levels single grouping variable. Although function useful data exploration, two strong weaknesses- arguments applied grouped_ function call applied uniformly levels grouping variable might want customize different levels grouping variable. one grouping variable can used repeat analysis reality can combination grouping variables operation needs repeated resulting combinations. see overcome limitation combining ggstatsplot purrr package. Note: using purrr::pmap(), must input arguments strings. can use ggplot2 themes extension packages (e.g. ggthemes). ’d like background introduction purrr package, please see chapter.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"introduction-and-methodology","dir":"Articles > Web_only","previous_headings":"","what":"Introduction and methodology","title":"Using 'ggstatsplot' with the 'purrr' package","text":"examples vignette going build lists things pass along purrr turn return list plots passed combine_plots. name implies combine_plots merges individual plots one bigger plot common labeling aesthetics. lists building? lists correspond parameters ggstatsplot function like ggbetweenstats. look help file ?ggbetweenstats example first parameter wants data file ’ll using. can also pass different titles even ggtheme themes. can pass: single character string xlab = \"Continent\" numeric nboot = 25 case reused/recycled many times needed. vector values nboot = c(50, 100, 200) case coerced list checked right class (case integer) right quantity entries vector .e., nboot = c(50, 100) fail ’re trying make three plots. list; either named data = year_list created go palette = list(\"Dark2\", \"Set1\"). list checked right class (case character) right quantity entries list.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"ggbetweenstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"Let’s start ggebtweenstats. ’ll use gapminder dataset. ’ll make 3 item list called year_list using dplyr::filter split. Now data divided three relevant years list ’ll turn purrr::pmap create list ggplot objects ’ll make use stored plot_list. look documentation ?pmap accept .l list lists. length .l determines number arguments .f called . List names used present. .f function want apply (, .f = ggbetweenstats). Let’s keep building list arguments, .l. First data = year_list, x y axes constant three plots pass variable name string x = \"continent\". final step pass plot_list object just created combine_plots function. 3 plots already labeling information combine_plots gives us opportunity add additional details merged plots specify layout rows columns.","code":"## let's split the data frame and create a list by years of interest year_list <- gapminder::gapminder %>% dplyr::filter(year %in% c(1967, 1987, 2007), continent != \"Oceania\") %>% split(f = .$year, drop = TRUE) ## checking the length of the list and the names of each element length(year_list) names(year_list) ## creating a list of plots plot_list <- purrr::pmap( .l = list( data = year_list, x = \"continent\", y = \"lifeExp\", xlab = \"Continent\", ylab = \"Life expectancy\", title = list( \"Year: 1967\", \"Year: 1987\", \"Year: 2007\" ), type = list(\"r\", \"bf\", \"np\"), pairwise.display = list(\"s\", \"ns\", \"all\"), p.adjust.method = list(\"hommel\", \"bonferroni\", \"BH\"), conf.level = list(0.99, 0.95, 0.90), digits = list(1, 2, 3), effsize.type = list( NULL, \"partial_omega\", \"partial_eta\" ), package = list(\"nord\", \"ochRe\", \"awtools\"), palette = list(\"aurora\", \"parliament\", \"bpalette\"), ggtheme = list( ggthemes::theme_stata(), ggplot2::theme_classic(), ggthemes::theme_fivethirtyeight() ) ), .f = ggbetweenstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Changes in life expectancy across continents (1967-2007)\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"ggwithinstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"using simulated data Attention Network Test provided ANT dataset ez package.","code":"library(ez) data(\"ANT\") ## loading data from `ez` package ## let's split the data frame and create a list by years of interest cue_list <- ANT %>% split(f = .$cue, drop = TRUE) ## checking the length of the list and the names of each element length(cue_list) ## creating a list of plots by applying the same function for elements of the list plot_list <- purrr::pmap( .l = list( data = cue_list, x = \"flank\", y = \"rt\", xlab = \"Flank\", ylab = \"Response time\", title = list( \"Cue: None\", \"Cue: Center\", \"Cue: Double\", \"Cue: Spatial\" ), type = list(\"p\", \"r\", \"bf\", \"np\"), pairwise.display = list(\"ns\", \"s\", \"ns\", \"all\"), p.adjust.method = list(\"fdr\", \"hommel\", \"bonferroni\", \"BH\"), conf.level = list(0.99, 0.99, 0.95, 0.90), digits = list(3, 2, 2, 3), effsize.type = list( \"omega\", \"eta\", \"partial_omega\", \"partial_eta\" ), package = list(\"ggsci\", \"palettetown\", \"palettetown\", \"wesanderson\"), palette = list(\"lanonc_lancet\", \"venomoth\", \"blastoise\", \"GrandBudapest1\"), ggtheme = list( ggplot2::theme_linedraw(), hrbrthemes::theme_ft_rc(), ggthemes::theme_solarized(), ggthemes::theme_gdocs() ) ), .f = ggwithinstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Response times across flank conditions for each type of cue\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"ggscatterstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"next example lets use methodology different data using ggscatterstats produce scatterplots combined marginal histograms/boxplots/density plots statistical details added subtitle. data ’ll use movies_long IMDB part ggstatsplot package. Since ’s large dataset relatively small categories like NC-17 ’ll sample one quarter data completely drop NC-17 using dplyr. time ’ll put code one block- remainder examples vary content follow exact methodology earlier examples.","code":"mpaa_list <- movies_long %>% dplyr::filter(mpaa != \"NC-17\") %>% dplyr::sample_frac(size = 0.25) %>% split(f = .$mpaa, drop = TRUE) ## creating a list of plots plot_list <- purrr::pmap( .l = list( data = mpaa_list, x = \"budget\", y = \"rating\", xlab = \"Budget (in millions of US dollars)\", ylab = \"Rating on IMDB\", title = list( \"MPAA Rating: PG\", \"MPAA Rating: PG-13\", \"MPAA Rating: R\" ), label.var = list(\"title\"), ## note that you need to quote the expressions label.expression = list( quote(rating > 7.5 & budget < 100), quote(rating > 8 & budget < 50), quote(rating > 8 & budget < 10) ), type = list(\"r\", \"np\", \"bf\"), xfill = list(\"#009E73\", \"#999999\", \"#0072B2\"), yfill = list(\"#CC79A7\", \"#F0E442\", \"#D55E00\"), ggtheme = list( ggthemes::theme_tufte(), ggplot2::theme_classic(), ggplot2::theme_light() ) ), .f = ggscatterstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" ), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"ggcorrmat","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## splitting the data frame by cut and creating a list ## let's leave out \"fair\" cut ## also, to make this fast, let's only use 5% of the sample cut_list <- ggplot2::diamonds %>% dplyr::sample_frac(size = 0.05) %>% dplyr::filter(cut != \"Fair\") %>% split(f = .$cut, drop = TRUE) ## checking the length and names of each element length(cut_list) names(cut_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = cut_list, cor.vars = list(c(\"carat\", \"depth\", \"table\", \"price\")), type = list(\"pearson\", \"np\", \"robust\", \"bf\"), partial = list(TRUE, FALSE, TRUE, FALSE), title = list(\"Cut: Good\", \"Cut: Very Good\", \"Cut: Premium\", \"Cut: Ideal\"), p.adjust.method = list(\"hommel\", \"fdr\", \"BY\", \"hochberg\"), lab.size = 3.5, colors = list( c(\"#56B4E9\", \"white\", \"#999999\"), c(\"#CC79A7\", \"white\", \"#F0E442\"), c(\"#56B4E9\", \"white\", \"#D55E00\"), c(\"#999999\", \"white\", \"#0072B2\") ), ggtheme = list( ggplot2::theme_linedraw(), ggplot2::theme_classic(), ggthemes::theme_fivethirtyeight(), ggthemes::theme_tufte() ) ), .f = ggcorrmat ) ## combining all individual plots from the list into a single plot using ## `combine_plots` function combine_plots( plotlist = plot_list, guides = \"keep\", annotation.args = list( title = \"Relationship between diamond attributes and price across cut\", caption = \"Dataset: Diamonds from ggplot2 package\" ), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"gghistostats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by continent ## let's leave out Oceania because it has just two data points continent_list <- gapminder::gapminder %>% dplyr::filter(year == 2007, continent != \"Oceania\") %>% split(f = .$continent, drop = TRUE) ## checking the length and names of each element length(continent_list) names(continent_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = continent_list, x = \"lifeExp\", xlab = \"Life expectancy\", test.value = list(35.6, 58.4, 41.6, 64.7), type = list(\"p\", \"np\", \"r\", \"bf\"), bf.message = list(TRUE, FALSE, FALSE, FALSE), title = list( \"Continent: Africa\", \"Continent: Americas\", \"Continent: Asia\", \"Continent: Europe\" ), effsize.type = list(\"d\", \"d\", \"g\", \"g\"), ggtheme = list( ggplot2::theme_classic(), hrbrthemes::theme_ipsum_tw(), ggplot2::theme_minimal(), hrbrthemes::theme_modern_rc() ) ), .f = gghistostats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Improvement in life expectancy worldwide since 1950\", caption = \"Note: black line - 1950; blue line - 2007\" ), plotgrid.args = list(nrow = 4) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"ggdotplotstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"library(ggthemes) library(hrbrthemes) ## let's split the data frame and create a list by continent ## let's leave out Oceania because it has just two data points continent_list <- gapminder::gapminder %>% dplyr::filter(continent != \"Oceania\") %>% split(f = .$continent, drop = TRUE) ## checking the length and names of each element length(continent_list) names(continent_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = continent_list, x = \"gdpPercap\", y = \"year\", xlab = \"GDP per capita (US$, inflation-adjusted)\", test.value = list(2500, 9000, 9500, 10000), type = list(\"p\", \"np\", \"r\", \"bf\"), title = list( \"Continent: Africa\", \"Continent: Americas\", \"Continent: Asia\", \"Continent: Europe\" ), effsize.type = list(\"d\", \"d\", \"g\", \"g\"), centrality.line.args = list( list(color = \"red\"), list(color = \"#0072B2\"), list(color = \"#D55E00\"), list(color = \"#CC79A7\") ), ggtheme = list( ggplot2::theme_minimal(base_family = \"serif\"), ggthemes::theme_tufte(), hrbrthemes::theme_ipsum_rc(axis_title_size = 10), ggthemes::theme_hc(bgcolor = \"darkunica\") ) ), .f = ggdotplotstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Improvement in GDP per capita from 1952-2007\"), plotgrid.args = list(nrow = 4), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"ggpiestats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by passenger class class_list <- Titanic_full %>% split(f = .$Class, drop = TRUE) ## checking the length and names of each element length(class_list) names(class_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = class_list, x = \"Survived\", y = \"Sex\", label = list(\"both\", \"count\", \"percentage\", \"both\"), title = list( \"Passenger class: 1st\", \"Passenger class: 2nd\", \"Passenger class: 3rd\", \"Passenger class: Crew\" ), caption = list( \"Total: 319, Died: 120, Survived: 199, % Survived: 62%\", \"Total: 272, Died: 155, Survived: 117, % Survived: 43%\", \"Total: 709, Died: 537, Survived: 172, % Survived: 25%\", \"Data not available for crew passengers\" ), package = list(\"RColorBrewer\", \"ghibli\", \"palettetown\", \"yarrr\"), palette = list(\"Accent\", \"MarnieMedium1\", \"pikachu\", \"nemo\"), ggtheme = list( ggplot2::theme_grey(), ggplot2::theme_bw(), ggthemes::theme_tufte(), ggthemes::theme_economist() ), proportion.test = list(TRUE, FALSE, TRUE, FALSE), type = list(\"p\", \"p\", \"bf\", \"p\") ), .f = ggpiestats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Survival in Titanic disaster by gender for all passenger classes\"), plotgrid.args = list(ncol = 1), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"ggbarstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by passenger class class_list <- Titanic_full %>% split(f = .$Class, drop = TRUE) ## checking the length and names of each element length(class_list) names(class_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = class_list, x = \"Survived\", y = \"Sex\", type = \"bayes\", label = list(\"both\", \"count\", \"percentage\", \"both\"), title = list( \"Passenger class: 1st\", \"Passenger class: 2nd\", \"Passenger class: 3rd\", \"Passenger class: Crew\" ), caption = list( \"Total: 319, Died: 120, Survived: 199, % Survived: 62%\", \"Total: 272, Died: 155, Survived: 117, % Survived: 43%\", \"Total: 709, Died: 537, Survived: 172, % Survived: 25%\", \"Data not available for crew passengers\" ), package = list(\"RColorBrewer\", \"ghibli\", \"palettetown\", \"yarrr\"), palette = list(\"Accent\", \"MarnieMedium1\", \"pikachu\", \"nemo\"), ggtheme = list( ggplot2::theme_grey(), ggplot2::theme_bw(), ggthemes::theme_tufte(), ggthemes::theme_economist() ) ), .f = ggbarstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Survival in Titanic disaster by gender for all passenger classes\", caption = \"Asterisks denote results from proportion tests: \\n***: p < 0.001, ns: non-significant\" ), plotgrid.args = list(ncol = 1), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"grouped_-variants","dir":"Articles > Web_only","previous_headings":"","what":"grouped_ variants","title":"Using 'ggstatsplot' with the 'purrr' package","text":"Note although examples written non-grouped variants functions, rule holds true grouped_ variants functions. example, want use grouped_gghistostats across three different datasets, can use purrr::pmap() function. sake brevity, plots displayed , can run following code check individual grouped_ plots (e.g., plotlist[[1]]).","code":"## create a list of plots plotlist <- purrr::pmap( .l = list( data = list(mtcars, iris, ToothGrowth), x = alist(wt, Sepal.Length, len), results.subtitle = list(FALSE), grouping.var = alist(am, Species, supp) ), .f = grouped_gghistostats ) ## given that we had three different datasets, we expect a list of length 3 ## (each of which contains a `grouped_` plot) length(plotlist)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"repeating-function-execution-across-multiple-columns-in-a-data-frame","dir":"Articles > Web_only","previous_headings":"","what":"Repeating function execution across multiple columns in a data frame","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"library(patchwork) ## running the same analysis on two different columns (creates a list of plots) plotlist <- purrr::pmap( .l = list( data = list(movies_long), x = \"mpaa\", y = list(\"rating\", \"length\"), title = list(\"IMDB score by MPAA rating\", \"Movie length by MPAA rating\") ), .f = ggbetweenstats ) ## combine plots using `patchwork` plotlist[[1]] + plotlist[[2]]"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Using 'ggstatsplot' with the 'purrr' package","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Indrajeet Patil. Maintainer, author, copyright holder. Chuck Powell. Contributor.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Patil, . (2021). Visualizations statistical details: 'ggstatsplot' approach. Journal Open Source Software, 6(61), 3167, doi:10.21105/joss.03167","code":"@Article{, doi = {10.21105/joss.03167}, url = {https://doi.org/10.21105/joss.03167}, year = {2021}, publisher = {{The Open Journal}}, volume = {6}, number = {61}, pages = {3167}, author = {Indrajeet Patil}, title = {{Visualizations with statistical details: The {'ggstatsplot'} approach}}, journal = {{Journal of Open Source Software}}, }"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"raison-dêtre-","dir":"","previous_headings":"","what":"Raison d’être","title":"ggplot2 Based Plots with Statistical Details","text":"“sought designs display information clear portrayal complexity. complication simple; rather … revelation complex.” - Edward R. Tufte {ggstatsplot} extension {ggplot2} package creating graphics details statistical tests included information-rich plots . typical exploratory data analysis workflow, data visualization statistical modeling two different phases: visualization informs modeling, modeling turn can suggest different visualization method, forth. central idea ggstatsplot simple: combine two phases one form graphics statistical details, makes data exploration simpler faster.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"ggplot2 Based Plots with Statistical Details","text":"want cite package scientific journal context, run following code R console:","code":"citation(\"ggstatsplot\") To cite package 'ggstatsplot' in publications use: Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167 A BibTeX entry for LaTeX users is @Article{, doi = {10.21105/joss.03167}, url = {https://doi.org/10.21105/joss.03167}, year = {2021}, publisher = {{The Open Journal}}, volume = {6}, number = {61}, pages = {3167}, author = {Indrajeet Patil}, title = {{Visualizations with statistical details: The {'ggstatsplot'} approach}}, journal = {{Journal of Open Source Software}}, }"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"acknowledgments","dir":"","previous_headings":"","what":"Acknowledgments","title":"ggplot2 Based Plots with Statistical Details","text":"like thank contributors ggstatsplot pointed bugs requested features hadn’t considered. especially like thank package developers (especially Daniel Lüdecke, Dominique Makowski, Mattan S. Ben-Shachar, Brenton Wiernik, Patrick Mair, Salvatore Mangiafico, etc.) patiently diligently answered relentless questions supported feature requests projects. also want thank Chuck Powell initial contributions package. hexsticker generously designed Sarah Otterstetter (Max Planck Institute Human Development, Berlin). package also benefited larger #rstats community Twitter, LinkedIn, StackOverflow. Thanks also due postdoc advisers (Mina Cikara Fiery Cushman Harvard University; Iyad Rahwan Max Planck Institute Human Development) patiently supported spending hundreds (?) hours working package rather paid . 😁","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"documentation-and-examples","dir":"","previous_headings":"","what":"Documentation and Examples","title":"ggplot2 Based Plots with Statistical Details","text":"see detailed documentation function stable CRAN version package, see: Publication Vignettes Presentation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-available-plots","dir":"","previous_headings":"","what":"Summary of available plots","title":"ggplot2 Based Plots with Statistical Details","text":"addition basic plots, ggstatsplot also provides grouped_ versions (see ) makes easy repeat analysis grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-types-of-statistical-analyses","dir":"","previous_headings":"","what":"Summary of types of statistical analyses","title":"ggplot2 Based Plots with Statistical Details","text":"table summarizes different types analyses currently supported package- Summary Bayesian analysis","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"statistical-reporting","dir":"","previous_headings":"","what":"Statistical reporting","title":"ggplot2 Based Plots with Statistical Details","text":"statistical tests reported plots, default template abides gold standard statistical reporting. example, results Yuen’s test trimmed means (robust t-test):","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-statistical-tests-and-effect-sizes","dir":"","previous_headings":"","what":"Summary of statistical tests and effect sizes","title":"ggplot2 Based Plots with Statistical Details","text":"Statistical analysis carried statsExpressions package, thus summary table statistical tests currently supported across various functions can found article package: https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggbetweenstats","dir":"","previous_headings":"Primary functions","what":"ggbetweenstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates either violin plot, box plot, mix two -group -condition comparisons results statistical tests subtitle. simplest function call looks like - Defaults return ✅ raw data + distributions ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ pairwise comparisons ✅ Bayesian hypothesis-testing ✅ Bayesian estimation number arguments can specified make plot even informative change default options. Additionally, also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":"set.seed(123) ggbetweenstats( data = iris, x = Species, y = Sepal.Length, title = \"Distribution of sepal length across Iris species\" ) set.seed(123) grouped_ggbetweenstats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = mpaa, y = length, grouping.var = genre, ggsignif.args = list(textsize = 4, tip_length = 0.01), p.adjust.method = \"bonferroni\", palette = \"default_jama\", package = \"ggsci\", plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Differences in movie length by mpaa ratings for different genres\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggwithinstats","dir":"","previous_headings":"Primary functions","what":"ggwithinstats()","title":"ggplot2 Based Plots with Statistical Details","text":"ggbetweenstats() function identical twin function ggwithinstats() repeated measures designs behaves fashion minor tweaks introduced properly visualize repeated measures design. can seen example , difference plot structure now group means connected paths highlight fact data paired . Defaults return ✅ raw data + distributions ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ pairwise comparisons ✅ Bayesian hypothesis-testing ✅ Bayesian estimation ggbetweenstats(), function also grouped_ variant makes repeating analysis across single grouping variable quicker. see example repeated measurements- Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":"set.seed(123) library(WRS2) ## for data library(afex) ## to run ANOVA ggwithinstats( data = WineTasting, x = Wine, y = Taste, title = \"Wine tasting\" ) set.seed(123) grouped_ggwithinstats( data = dplyr::filter(bugs_long, region %in% c(\"Europe\", \"North America\"), condition %in% c(\"LDLF\", \"LDHF\")), x = condition, y = desire, type = \"np\", xlab = \"Condition\", ylab = \"Desire to kill an artrhopod\", grouping.var = region )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"gghistostats","dir":"","previous_headings":"Primary functions","what":"gghistostats()","title":"ggplot2 Based Plots with Statistical Details","text":"visualize distribution single variable check mean significantly different specified value one-sample test, gghistostats() can used. Defaults return ✅ counts + proportion bins ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":"set.seed(123) gghistostats( data = ggplot2::msleep, x = awake, title = \"Amount of time spent awake\", test.value = 12, binwidth = 1 ) set.seed(123) grouped_gghistostats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = budget, test.value = 50, type = \"nonparametric\", xlab = \"Movies budget (in million US$)\", grouping.var = genre, ggtheme = ggthemes::theme_tufte(), ## modify the defaults from `{ggstatsplot}` for each plot plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Movies budgets for different genres\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggdotplotstats","dir":"","previous_headings":"Primary functions","what":"ggdotplotstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function similar gghistostats(), intended used numeric variable also label. Defaults return ✅ descriptives (mean + sample size) ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation rest functions package, also grouped_ variant function facilitate looping operation levels single grouping variable. Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":"set.seed(123) ggdotplotstats( data = dplyr::filter(gapminder::gapminder, continent == \"Asia\"), y = country, x = lifeExp, test.value = 55, type = \"robust\", title = \"Distribution of life expectancy in Asian continent\", xlab = \"Life expectancy\" ) set.seed(123) grouped_ggdotplotstats( data = dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")), x = cty, y = manufacturer, type = \"bayes\", xlab = \"city miles per gallon\", ylab = \"car manufacturer\", grouping.var = cyl, test.value = 15.5, point.args = list(color = \"red\", size = 5, shape = 13), annotation.args = list(title = \"Fuel economy data\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggscatterstats","dir":"","previous_headings":"Primary functions","what":"ggscatterstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates scatterplot marginal distributions overlaid axes results statistical tests subtitle: Defaults return ✅ raw data + distributions ✅ marginal distributions ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable. Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":"ggscatterstats( data = ggplot2::msleep, x = sleep_rem, y = awake, xlab = \"REM sleep (in hours)\", ylab = \"Amount of time spent awake (in hours)\", title = \"Understanding mammalian sleep\" ) set.seed(123) grouped_ggscatterstats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = rating, y = length, grouping.var = genre, label.var = title, label.expression = length > 200, xlab = \"IMDB rating\", ggtheme = ggplot2::theme_grey(), ggplot.component = list(ggplot2::scale_x_continuous(breaks = seq(2, 9, 1), limits = (c(2, 9)))), plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Relationship between movie length and IMDB ratings\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggcorrmat","dir":"","previous_headings":"Primary functions","what":"ggcorrmat","title":"ggplot2 Based Plots with Statistical Details","text":"ggcorrmat makes correlalogram (matrix correlation coefficients) minimal amount code. Just sticking defaults produces publication-ready correlation matrices. , sake exploring available options, let’s change defaults. example, multiple aesthetics-related arguments can modified change appearance correlation matrix. Defaults return ✅ effect size + significance ✅ careful handling NAs NAs present selected variables, legend display minimum, median, maximum number pairs used correlation tests. also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":"set.seed(123) ## as a default this function outputs a correlation matrix plot ggcorrmat( data = ggplot2::msleep, colors = c(\"#B2182B\", \"white\", \"#4D4D4D\"), title = \"Correlalogram for mammals sleep dataset\", subtitle = \"sleep units: hours; weight units: kilograms\" ) set.seed(123) grouped_ggcorrmat( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), type = \"robust\", colors = c(\"#cbac43\", \"white\", \"#550000\"), grouping.var = genre, matrix.type = \"lower\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggpiestats","dir":"","previous_headings":"Primary functions","what":"ggpiestats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates pie chart categorical nominal variables results contingency table analysis (Pearson’s chi-squared test -subjects design McNemar’s chi-squared test within-subjects design) included subtitle plot. one categorical variable entered, results one-sample proportion test (.e., chi-squared goodness fit test) displayed subtitle. study interaction two categorical variables: Defaults return ✅ descriptives (frequency + %s) ✅ inferential statistics ✅ effect size + CIs ✅ Goodness--fit tests ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable. Following example case theoretical question proportions different levels single nominal variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":"set.seed(123) ggpiestats( data = mtcars, x = am, y = cyl, package = \"wesanderson\", palette = \"Royal1\", title = \"Dataset: Motor Trend Car Road Tests\", legend.title = \"Transmission\" ) set.seed(123) grouped_ggpiestats( data = mtcars, x = cyl, grouping.var = am, label.repel = TRUE, package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggbarstats","dir":"","previous_headings":"Primary functions","what":"ggbarstats()","title":"ggplot2 Based Plots with Statistical Details","text":"case fan pie charts (good reasons), can alternatively use ggbarstats() function similar syntax. N.B. p-values one-sample proportion test displayed top bar. Defaults return ✅ descriptives (frequency + %s) ✅ inferential statistics ✅ effect size + CIs ✅ Goodness--fit tests ✅ Bayesian hypothesis-testing ✅ Bayesian estimation , needless say, also grouped_ variant function- Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","code":"set.seed(123) library(ggplot2) ggbarstats( data = movies_long, x = mpaa, y = genre, title = \"MPAA Ratings by Genre\", xlab = \"movie genre\", legend.title = \"MPAA rating\", ggplot.component = list(ggplot2::scale_x_discrete(guide = ggplot2::guide_axis(n.dodge = 2))), palette = \"Set2\" ) ## setup set.seed(123) grouped_ggbarstats( data = mtcars, x = am, y = cyl, grouping.var = vs, package = \"wesanderson\", palette = \"Darjeeling2\" # , # ggtheme = ggthemes::theme_tufte(base_size = 12) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggcoefstats","dir":"","previous_headings":"Primary functions","what":"ggcoefstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function ggcoefstats() generates dot--whisker plots regression models. tidy data frames prepared using parameters::model_parameters(). Additionally, available, model summary indices also extracted performance::model_performance(). Defaults return ✅ inferential statistics ✅ estimate + CIs ✅ model summary (AIC BIC) Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":"set.seed(123) ## model mod <- stats::lm(formula = mpg ~ am * cyl, data = mtcars) ggcoefstats(mod)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"extracting-expressions-and-data-frames-with-statistical-details","dir":"","previous_headings":"Primary functions","what":"Extracting expressions and data frames with statistical details","title":"ggplot2 Based Plots with Statistical Details","text":"ggstatsplot also offers convenience function extract data frames statistical details used create expressions displayed ggstatsplot plots. Note analysis carried statsExpressions package: https://indrajeetpatil.github.io/statsExpressions/","code":"set.seed(123) p <- ggbetweenstats(mtcars, cyl, mpg) # extracting expression present in the subtitle extract_subtitle(p) #> list(italic(\"F\")[\"Welch\"](2, 18.03) == \"31.62\", italic(p) == #> \"1.27e-06\", widehat(omega[\"p\"]^2) == \"0.74\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"32\") # extracting expression present in the caption extract_caption(p) #> list(log[e] * (BF[\"01\"]) == \"-14.92\", widehat(italic(R^\"2\"))[\"Bayesian\"]^\"posterior\" == #> \"0.71\", CI[\"95%\"]^HDI ~ \"[\" * \"0.57\", \"0.79\" * \"]\", italic(\"r\")[\"Cauchy\"]^\"JZS\" == #> \"0.71\") # a list of tibbles containing statistical analysis summaries extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> statistic df df.error p.value #> #> 1 31.6 2 18.0 0.00000127 #> method effectsize estimate #> #> 1 One-way analysis of means (not assuming equal variances) Omega2 0.744 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0.531 1 ncp F 32 #> #> $caption_data #> # A tibble: 6 × 17 #> term pd prior.distribution prior.location prior.scale bf10 #> #> 1 mu 1 cauchy 0 0.707 3008850. #> 2 cyl-4 1 cauchy 0 0.707 3008850. #> 3 cyl-6 0.780 cauchy 0 0.707 3008850. #> 4 cyl-8 1 cauchy 0 0.707 3008850. #> 5 sig2 1 cauchy 0 0.707 3008850. #> 6 g_cyl 1 cauchy 0 0.707 3008850. #> method log_e_bf10 effectsize estimate std.dev #> #> 1 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 2 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 3 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 4 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 5 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 6 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> conf.level conf.low conf.high conf.method n.obs expression #> #> 1 0.95 0.574 0.788 HDI 32 #> 2 0.95 0.574 0.788 HDI 32 #> 3 0.95 0.574 0.788 HDI 32 #> 4 0.95 0.574 0.788 HDI 32 #> 5 0.95 0.574 0.788 HDI 32 #> 6 0.95 0.574 0.788 HDI 32 #> #> $pairwise_comparisons_data #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 -6.67 0.00110 two.sided q Holm #> 2 4 8 -10.7 0.0000140 two.sided q Holm #> 3 6 8 -7.48 0.000257 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"using-ggstatsplot-statistical-details-with-custom-plots","dir":"","previous_headings":"Primary functions","what":"Using {ggstatsplot} statistical details with custom plots","title":"ggplot2 Based Plots with Statistical Details","text":"Sometimes may like default plots produced ggstatsplot. cases, can use custom plots (ggplot2 plotting packages) still use ggstatsplot functions display results relevant statistical test. example, following chunk, create plot using ggplot2 package, use ggstatsplot function extracting expression:","code":"## loading the needed libraries set.seed(123) library(ggplot2) ## using `{ggstatsplot}` to get expression with statistical results stats_results <- ggbetweenstats(morley, Expt, Speed) %>% extract_subtitle() ## creating a custom plot of our choosing ggplot(morley, aes(x = as.factor(Expt), y = Speed)) + geom_boxplot() + labs( title = \"Michelson-Morley experiments\", subtitle = stats_results, x = \"Speed of light\", y = \"Experiment number\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-benefits-of-using-ggstatsplot","dir":"","previous_headings":"","what":"Summary of benefits of using {ggstatsplot}","title":"ggplot2 Based Plots with Statistical Details","text":"need use scores packages statistical analysis (e.g., one get stats, one get effect sizes, another get Bayes Factors, yet another get pairwise comparisons, etc.). Minimal amount code needed functions (typically data, x, y), minimizes chances error makes tidy scripts. Conveniently toggle statistical approaches. Truly makes figures worth thousand words. need copy-paste results text editor (MS-Word, e.g.). Disembodied figures stand easy evaluate reader. breathing room theoretical discussion text. need worry updating figures statistical details separately.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"misconceptions-about-ggstatsplot","dir":"","previous_headings":"","what":"Misconceptions about {ggstatsplot}","title":"ggplot2 Based Plots with Statistical Details","text":"package … ❌ alternative learning ggplot2 ✅ (better know ggplot2, can modify defaults liking.) ❌ meant used talks/presentations ✅ (Default plots can complicated effectively communicating results time-constrained presentation settings, e.g. conference talks.) ❌ game town ✅ (GUI software alternatives: JASP jamovi).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"extensions","dir":"","previous_headings":"","what":"Extensions","title":"ggplot2 Based Plots with Statistical Details","text":"case use GUI software jamovi, can install module called jjstatsplot, wrapper around ggstatsplot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"ggplot2 Based Plots with Statistical Details","text":"’m happy receive bug reports, suggestions, questions, () contributions fix problems add features. personally prefer using GitHub issues system trying reach ways (personal e-mail, Twitter, etc.). Pull Requests contributions encouraged. simple ways can contribute (increasing order commitment): Read correct inconsistencies documentation Raise issues bugs wanted features Review code Add new functionality (form new plotting functions helpers preparing subtitles) Please note project released Contributor Code Conduct. participating project agree abide terms.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":null,"dir":"Reference","previous_headings":"","what":"Titanic dataset. — Titanic_full","title":"Titanic dataset. — Titanic_full","text":"Titanic dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Titanic dataset. — Titanic_full","text":"","code":"Titanic_full"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Titanic dataset. — Titanic_full","text":"data frame 2201 rows 5 variables id. Dummy identity number person. Class. 1st, 2nd, 3rd, Crew. Sex. Male, Female. Age. Child, Adult. Survived. , Yes.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Titanic dataset. — Titanic_full","text":"data set provides information fate passengers fatal maiden voyage ocean liner 'Titanic', summarized according economic status (class), sex, age survival. modified dataset {datasets} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Titanic dataset. — Titanic_full","text":"","code":"dim(Titanic_full) #> [1] 2201 5 head(Titanic_full) #> # A tibble: 6 × 5 #> id Class Sex Age Survived #> #> 1 1 3rd Male Child No #> 2 2 3rd Male Child No #> 3 3 3rd Male Child No #> 4 4 3rd Male Child No #> 5 5 3rd Male Child No #> 6 6 3rd Male Child No dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy version of the ","title":"Tidy version of the ","text":"Tidy version \"Bugs\" dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy version of the ","text":"","code":"bugs_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Tidy version of the ","text":"data frame 372 rows 6 variables subject. Dummy identity number participant. gender. Participant's gender (Female, Male). region. Region world participant . education. Level education. condition. Condition experiment participant gave rating (LDLF: low freighteningness low disgustingness; LFHD: low freighteningness high disgustingness; HFHD: high freighteningness low disgustingness; HFHD: high freighteningness high disgustingness). desire. desire kill arthropod indicated scale 0 10.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy version of the ","text":"data set, \"Bugs\", provides extent men women want kill arthropods vary freighteningness (low, high) disgustingness (low, high). participant rates attitudes towards anthropods. Subset data reported Ryan et al. (2013).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Tidy version of the ","text":"Ryan, R. S., Wilde, M., & Crist, S. (2013). Compared small, supervised lab experiment, large, unsupervised web-based experiment previously unknown effect benefits outweigh potential costs. Computers Human Behavior, 29(4), 1295-1301.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy version of the ","text":"","code":"dim(bugs_long) #> [1] 372 6 head(bugs_long) #> # A tibble: 6 × 6 #> subject gender region education condition desire #> #> 1 1 Female North America some LDLF 6 #> 2 2 Female North America advance LDLF 10 #> 3 3 Female Europe college LDLF 5 #> 4 4 Female North America college LDLF 6 #> 5 5 Female North America some LDLF 3 #> 6 6 Female Europe some LDLF 2 dplyr::glimpse(bugs_long) #> Rows: 372 #> Columns: 6 #> $ subject 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1… #> $ gender Female, Female, Female, Female, Female, Female, Female, Fema… #> $ region North America, North America, Europe, North America, North A… #> $ education some, advance, college, college, some, some, some, high, hig… #> $ condition \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDL… #> $ desire 6.0, 10.0, 5.0, 6.0, 3.0, 2.0, 10.0, 10.0, 9.5, 8.5, 0.0, 9.…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Combining and arranging multiple plots in a grid — combine_plots","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"Wrapper around patchwork::wrap_plots() return combined grid plots annotations. case want create grid plots, highly recommended use {patchwork} package directly wrapper around mostly useful {ggstatsplot} plots. exported backward compatibility.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"","code":"combine_plots( plotlist, plotgrid.args = list(), annotation.args = list(), guides = \"collect\", ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"plotlist list containing ggplot objects. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation(). guides string specifying guides treated layout. 'collect' collect guides given nesting level, removing duplicates. 'keep' stop collection level let guides placed alongside plot. auto allow guides collected upper level tries, place alongside plot . modify default guide \"position\" theme(legend.position=...) also collecting guides must apply change overall patchwork (see example). ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"combined plot annotation labels.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"","code":"library(ggplot2) # first plot p1 <- ggplot( data = subset(iris, iris$Species == \"setosa\"), aes(x = Sepal.Length, y = Sepal.Width) ) + geom_point() + labs(title = \"setosa\") # second plot p2 <- ggplot( data = subset(iris, iris$Species == \"versicolor\"), aes(x = Sepal.Length, y = Sepal.Width) ) + geom_point() + labs(title = \"versicolor\") # combining the plot with a title and a caption combine_plots( plotlist = list(p1, p2), plotgrid.args = list(nrow = 1), annotation.args = list( tag_levels = \"a\", title = \"Dataset: Iris Flower dataset\", subtitle = \"Edgar Anderson collected this data\", caption = \"Note: Only two species of flower are displayed\", theme = theme( plot.subtitle = element_text(size = 20), plot.title = element_text(size = 30) ) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Split data frame into a list by grouping variable — .grouped_list","title":"Split data frame into a list by grouping variable — .grouped_list","text":"function splits data frame list, length list equal factor levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split data frame into a list by grouping variable — .grouped_list","text":"","code":".grouped_list(data, grouping.var)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split data frame into a list by grouping variable — .grouped_list","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. grouping.var single grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split data frame into a list by grouping variable — .grouped_list","text":"","code":"ggstatsplot:::.grouped_list(ggplot2::msleep, grouping.var = vore) #> $data #> $data$carni #> # A tibble: 19 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Cheet… Acin… carni Carn… lc 12.1 NA NA 11.9 #> 2 North… Call… carni Carn… vu 8.7 1.4 0.383 15.3 #> 3 Dog Canis carni Carn… domesticated 10.1 2.9 0.333 13.9 #> 4 Long-… Dasy… carni Cing… lc 17.4 3.1 0.383 6.6 #> 5 Domes… Felis carni Carn… domesticated 12.5 3.2 0.417 11.5 #> 6 Pilot… Glob… carni Ceta… cd 2.7 0.1 NA 21.4 #> 7 Gray … Hali… carni Carn… lc 6.2 1.5 NA 17.8 #> 8 Thick… Lutr… carni Dide… lc 19.4 6.6 NA 4.6 #> 9 Slow … Nyct… carni Prim… NA 11 NA NA 13 #> 10 North… Onyc… carni Rode… lc 14.5 NA NA 9.5 #> 11 Tiger Pant… carni Carn… en 15.8 NA NA 8.2 #> 12 Jaguar Pant… carni Carn… nt 10.4 NA NA 13.6 #> 13 Lion Pant… carni Carn… vu 13.5 NA NA 10.5 #> 14 Caspi… Phoca carni Carn… vu 3.5 0.4 NA 20.5 #> 15 Commo… Phoc… carni Ceta… vu 5.6 NA NA 18.4 #> 16 Bottl… Turs… carni Ceta… NA 5.2 NA NA 18.8 #> 17 Genet Gene… carni Carn… NA 6.3 1.3 NA 17.7 #> 18 Arcti… Vulp… carni Carn… NA 12.5 NA NA 11.5 #> 19 Red f… Vulp… carni Carn… NA 9.8 2.4 0.35 14.2 #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$herbi #> # A tibble: 32 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Mount… Aplo… herbi Rode… nt 14.4 2.4 NA 9.6 #> 2 Cow Bos herbi Arti… domesticated 4 0.7 0.667 20 #> 3 Three… Brad… herbi Pilo… NA 14.4 2.2 0.767 9.6 #> 4 Roe d… Capr… herbi Arti… lc 3 NA NA 21 #> 5 Goat Capri herbi Arti… lc 5.3 0.6 NA 18.7 #> 6 Guine… Cavis herbi Rode… domesticated 9.4 0.8 0.217 14.6 #> 7 Chinc… Chin… herbi Rode… domesticated 12.5 1.5 0.117 11.5 #> 8 Tree … Dend… herbi Hyra… lc 5.3 0.5 NA 18.7 #> 9 Asian… Elep… herbi Prob… en 3.9 NA NA 20.1 #> 10 Horse Equus herbi Peri… domesticated 2.9 0.6 1 21.1 #> # ℹ 22 more rows #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$insecti #> # A tibble: 5 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Big br… Epte… inse… Chir… lc 19.7 3.9 0.117 4.3 #> 2 Little… Myot… inse… Chir… NA 19.9 2 0.2 4.1 #> 3 Giant … Prio… inse… Cing… en 18.1 6.1 NA 5.9 #> 4 Easter… Scal… inse… Sori… lc 8.4 2.1 0.167 15.6 #> 5 Short-… Tach… inse… Mono… NA 8.6 NA NA 15.4 #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$omni #> # A tibble: 20 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Owl m… Aotus omni Prim… NA 17 1.8 NA 7 #> 2 Great… Blar… omni Sori… lc 14.9 2.3 0.133 9.1 #> 3 Grivet Cerc… omni Prim… lc 10 0.7 NA 14 #> 4 Star-… Cond… omni Sori… lc 10.3 2.2 NA 13.7 #> 5 Afric… Cric… omni Rode… NA 8.3 2 NA 15.7 #> 6 Lesse… Cryp… omni Sori… lc 9.1 1.4 0.15 14.9 #> 7 North… Dide… omni Dide… lc 18 4.9 0.333 6 #> 8 Europ… Erin… omni Erin… lc 10.1 3.5 0.283 13.9 #> 9 Patas… Eryt… omni Prim… lc 10.9 1.1 NA 13.1 #> 10 Galago Gala… omni Prim… NA 9.8 1.1 0.55 14.2 #> 11 Human Homo omni Prim… NA 8 1.9 1.5 16 #> 12 Macaq… Maca… omni Prim… NA 10.1 1.2 0.75 13.9 #> 13 Chimp… Pan omni Prim… NA 9.7 1.4 1.42 14.3 #> 14 Baboon Papio omni Prim… NA 9.4 1 0.667 14.6 #> 15 Potto Pero… omni Prim… lc 11 NA NA 13 #> 16 Afric… Rhab… omni Rode… NA 8.7 NA NA 15.3 #> 17 Squir… Saim… omni Prim… NA 9.6 1.4 NA 14.4 #> 18 Pig Sus omni Arti… domesticated 9.1 2.4 0.5 14.9 #> 19 Tenrec Tenr… omni Afro… NA 15.6 2.3 NA 8.4 #> 20 Tree … Tupa… omni Scan… NA 8.9 2.6 0.233 15.1 #> # ℹ 2 more variables: brainwt , bodywt #> #> #> $title #> [1] \"carni\" \"herbi\" \"insecti\" \"omni\" #>"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if palette has enough number of colors — .is_palette_sufficient","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"Informs user using default color palette number factor levels greater 8, maximum number colors allowed \"Dark2\" palette {RColorBrewer} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"","code":".is_palette_sufficient(package, palette, min_length)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"","code":"ggstatsplot:::.is_palette_sufficient(\"RColorBrewer\", \"Dark2\", 6L) #> [1] TRUE ggstatsplot:::.is_palette_sufficient(\"RColorBrewer\", \"Dark2\", 12L) #> Number of labels is greater than default palette color count. #> • Select another color `palette` (and/or `package`). #> [1] FALSE"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":null,"dir":"Reference","previous_headings":"","what":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"Extracting data frames expressions {ggstatsplot} plots","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"","code":"extract_stats(p) extract_subtitle(p) extract_caption(p)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"p plot {ggstatsplot} package","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"list tibbles containing summaries various statistical analyses. exact details included depend function.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"convenience functions extract data frames expressions statistical details used create expressions displayed {ggstatsplot} plots subtitle, caption, etc. Note analysis carried {statsExpressions} package. using functions extract data frames, better using package. exception ggcorrmat() function. , data frame want, using ggcorrmat() anyway. can use correlation::correlation() function provides tidy data frames default.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"","code":"set.seed(123) # non-grouped plot p1 <- ggbetweenstats(mtcars, cyl, mpg) # grouped plot p2 <- grouped_ggbarstats(Titanic_full, Survived, Sex, grouping.var = Age) # extracting expressions ----------------------------- extract_subtitle(p1) #> list(italic(\"F\")[\"Welch\"](2, 18.03) == \"31.62\", italic(p) == #> \"1.27e-06\", widehat(omega[\"p\"]^2) == \"0.74\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"32\") extract_caption(p1) #> list(log[e] * (BF[\"01\"]) == \"-14.92\", widehat(italic(R^\"2\"))[\"Bayesian\"]^\"posterior\" == #> \"0.71\", CI[\"95%\"]^HDI ~ \"[\" * \"0.57\", \"0.79\" * \"]\", italic(\"r\")[\"Cauchy\"]^\"JZS\" == #> \"0.71\") extract_subtitle(p2) #> [[1]] #> list(chi[\"Pearson\"]^2 * \"(\" * 1 * \")\" == \"460.87\", italic(p) == #> \"3.11e-102\", widehat(italic(\"V\"))[\"Cramer\"] == \"0.47\", CI[\"95%\"] ~ #> \"[\" * \"0.43\", \"0.51\" * \"]\", italic(\"n\")[\"obs\"] == \"2,092\") #> #> [[2]] #> list(chi[\"Pearson\"]^2 * \"(\" * 1 * \")\" == \"3.03\", italic(p) == #> \"0.08\", widehat(italic(\"V\"))[\"Cramer\"] == \"0.14\", CI[\"95%\"] ~ #> \"[\" * \"0.00\", \"0.34\" * \"]\", italic(\"n\")[\"obs\"] == \"109\") #> extract_caption(p2) #> [[1]] #> list(log[e] * (BF[\"01\"]) == \"-213.79\", widehat(italic(\"V\"))[\"Cramer\"]^\"posterior\" == #> \"0.47\", CI[\"95%\"]^ETI ~ \"[\" * \"0.43\", \"0.51\" * \"]\", italic(\"a\")[\"Gunel-Dickey\"] == #> \"1.00\") #> #> [[2]] #> list(log[e] * (BF[\"01\"]) == \"-0.03\", widehat(italic(\"V\"))[\"Cramer\"]^\"posterior\" == #> \"0.13\", CI[\"95%\"]^ETI ~ \"[\" * \"0.00\", \"0.33\" * \"]\", italic(\"a\")[\"Gunel-Dickey\"] == #> \"1.00\") #> # extracting data frames ----------------------------- extract_stats(p1) #> $subtitle_data #> # A tibble: 1 × 14 #> statistic df df.error p.value #> #> 1 31.6 2 18.0 0.00000127 #> method effectsize estimate #> #> 1 One-way analysis of means (not assuming equal variances) Omega2 0.744 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0.531 1 ncp F 32 #> #> $caption_data #> # A tibble: 6 × 17 #> term pd prior.distribution prior.location prior.scale bf10 #> #> 1 mu 1 cauchy 0 0.707 3008850. #> 2 cyl-4 1 cauchy 0 0.707 3008850. #> 3 cyl-6 0.780 cauchy 0 0.707 3008850. #> 4 cyl-8 1 cauchy 0 0.707 3008850. #> 5 sig2 1 cauchy 0 0.707 3008850. #> 6 g_cyl 1 cauchy 0 0.707 3008850. #> method log_e_bf10 effectsize estimate std.dev #> #> 1 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 2 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 3 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 4 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 5 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 6 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> conf.level conf.low conf.high conf.method n.obs expression #> #> 1 0.95 0.574 0.788 HDI 32 #> 2 0.95 0.574 0.788 HDI 32 #> 3 0.95 0.574 0.788 HDI 32 #> 4 0.95 0.574 0.788 HDI 32 #> 5 0.95 0.574 0.788 HDI 32 #> 6 0.95 0.574 0.788 HDI 32 #> #> $pairwise_comparisons_data #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 -6.67 0.00110 two.sided q Holm #> 2 4 8 -10.7 0.0000140 two.sided q Holm #> 3 6 8 -7.48 0.000257 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" extract_stats(p2) #> [[1]] #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 461. 1 3.11e-102 Pearson's Chi-squared test Cramer's V (adj.) #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.469 0.95 0.426 0.512 ncp chisq 2092 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.468 0.426 0.509 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 7.02e92 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 214. 2092 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 4 × 5 #> Sex Survived counts perc .label #> #> 1 Female Yes 316 74.4 74% #> 2 Male Yes 338 20.3 20% #> 3 Female No 109 25.6 26% #> 4 Male No 1329 79.7 80% #> #> $one_sample_data #> # A tibble: 2 × 19 #> Sex counts perc N statistic df p.value method effectsize estimate #> #> 1 Male 1667 79.7 (n =… 589. 1 3.87e-130 Chi-s… Pearson's… 0.511 #> 2 Female 425 20.3 (n =… 101. 1 1.01e- 23 Chi-s… Pearson's… 0.438 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" #> #> [[2]] #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize estimate #> #> 1 3.03 1 0.0818 Pearson's Chi-squared test Cramer's V (adj.) 0.137 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0 0.343 ncp chisq 109 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.131 0 0.328 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 1.03 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 0.0313 109 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 4 × 5 #> Sex Survived counts perc .label #> #> 1 Female Yes 28 62.2 62% #> 2 Male Yes 29 45.3 45% #> 3 Female No 17 37.8 38% #> 4 Male No 35 54.7 55% #> #> $one_sample_data #> # A tibble: 2 × 19 #> Sex counts perc N statistic df p.value method effectsize estimate #> #> 1 Male 64 58.7 (n = 6… 0.562 1 0.453 Chi-s… Pearson's… 0.0933 #> 2 Female 45 41.3 (n = 4… 2.69 1 0.101 Chi-s… Pearson's… 0.237 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" #>"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Stacked bar charts with statistical tests — ggbarstats","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Bar charts categorical data statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Stacked bar charts with statistical tests — ggbarstats","text":"","code":"ggbarstats( data, x, y, counts = NULL, type = \"parametric\", paired = FALSE, results.subtitle = TRUE, label = \"percentage\", label.args = list(alpha = 1, fill = \"white\"), sample.size.label.args = list(size = 4), digits = 2L, proportion.test = results.subtitle, digits.perc = 0L, bf.message = TRUE, ratio = NULL, conf.level = 0.95, sampling.plan = \"indepMulti\", fixed.margin = \"rows\", prior.concentration = 1, title = NULL, subtitle = NULL, caption = NULL, legend.title = NULL, xlab = NULL, ylab = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Stacked bar charts with statistical tests — ggbarstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). counts variable data containing counts, NULL row represents single observation. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). sample.size.label.args Additional aesthetic arguments passed ggplot2::geom_text(). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. legend.title Title text legend. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Stacked bar charts with statistical tests — ggbarstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"contingency-table-analyses","dir":"Reference","previous_headings":"","what":"Contingency table analyses","title":"Stacked bar charts with statistical tests — ggbarstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"two-way-table","dir":"Reference","previous_headings":"","what":"two-way table","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"one-way-table","dir":"Reference","previous_headings":"","what":"one-way table","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Stacked bar charts with statistical tests — ggbarstats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- ggbarstats(mtcars, x = vs, y = cyl) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 21.3 2 0.0000232 Pearson's Chi-squared test Cramer's V (adj.) #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.789 0.95 0.371 1 ncp chisq 32 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.683 0.436 0.840 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 30129. #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 10.3 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 5 × 5 #> cyl vs counts perc .label #> #> 1 4 1 10 90.9 91% #> 2 6 1 4 57.1 57% #> 3 4 0 1 9.09 9% #> 4 6 0 3 42.9 43% #> 5 8 0 14 100 100% #> #> $one_sample_data #> # A tibble: 3 × 19 #> cyl counts perc N statistic df p.value method effectsize estimate #> #> 1 8 14 43.8 (n = 14) 14 1 1.83e-4 Chi-s… Pearson's… 0.707 #> 2 6 7 21.9 (n = 7) 0.143 1 7.05e-1 Chi-s… Pearson's… 0.141 #> 3 4 11 34.4 (n = 11) 7.36 1 6.66e-3 Chi-s… Pearson's… 0.633 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"combination box violin plots along jittered data points -subjects designs statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"","code":"ggbetweenstats( data, x, y, type = \"parametric\", pairwise.display = \"significant\", p.adjust.method = \"holm\", effsize.type = \"unbiased\", bf.prior = 0.707, bf.message = TRUE, results.subtitle = TRUE, xlab = NULL, ylab = NULL, caption = NULL, title = NULL, subtitle = NULL, digits = 2L, var.equal = FALSE, conf.level = 0.95, nboot = 100L, tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = list(size = 5, color = \"darkred\"), centrality.label.args = list(size = 3, nudge_x = 0.4, segment.linetype = 4, min.segment.length = 0), point.args = list(position = ggplot2::position_jitterdodge(dodge.width = 0.6), alpha = 0.4, size = 3, stroke = 0, na.rm = TRUE), boxplot.args = list(width = 0.3, alpha = 0.2, na.rm = TRUE), violin.args = list(width = 0.5, alpha = 0.2, na.rm = TRUE), ggsignif.args = list(textsize = 3, tip_length = 0.01, na.rm = TRUE), ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. caption text plot caption. argument relevant bf.message = FALSE. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). var.equal logical variable indicating whether treat two variances equal. TRUE pooled variance used estimate variance otherwise Welch (Satterthwaite) approximation degrees freedom used. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.point.args, centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"centrality-measures","dir":"Reference","previous_headings":"","what":"Centrality measures","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"two-sample-tests","dir":"Reference","previous_headings":"","what":"Two-sample tests","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"one-way-anova","dir":"Reference","previous_headings":"","what":"One-way ANOVA","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects-1","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects-1","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"pairwise-comparison-tests","dir":"Reference","previous_headings":"","what":"Pairwise comparison tests","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects-2","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects-2","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"","code":"# for reproducibility set.seed(123) p <- ggbetweenstats(mtcars, am, mpg) p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 18 #> parameter1 parameter2 mean.parameter1 mean.parameter2 statistic df.error #> #> 1 mpg am 17.1 24.4 -3.77 18.3 #> p.value method alternative effectsize estimate conf.level #> #> 1 0.00137 Welch Two Sample t-test two.sided Hedges' g -1.35 0.95 #> conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 -2.17 -0.512 ncp t 32 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test -6.44 0.95 -10.1 -2.74 0.999 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 86.6 Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 4.46 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # modifying defaults ggbetweenstats( morley, x = Expt, y = Speed, type = \"robust\", xlab = \"The experiment number\", ylab = \"Speed-of-light measurement\" ) # you can remove a specific geom to reduce complexity of the plot ggbetweenstats( mtcars, am, wt, # to remove violin plot violin.args = list(width = 0, linewidth = 0), # to remove boxplot boxplot.args = list(width = 0), # to remove points point.args = list(alpha = 0) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Dot-and-whisker plots for regression analyses — ggcoefstats","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"Plot regression coefficients' point estimates dots confidence interval whiskers statistical details included labels. Although statistical models displayed plot may differ based class models investigated, aspects plot invariant across models: dot-whisker plot contains dot representing estimate confidence intervals (95% default). estimate can either effect sizes (tests depend F-statistic) regression coefficients (tests t-, chi^2-, z-statistic), etc. function , default, display helpful x-axis label clear estimates displayed. confidence intervals can sometimes asymmetric bootstrapping used. label attached dot provide details statistical test carried typically contain estimate, statistic, p-value. caption contain diagnostic information, available, models can useful model selection: smaller Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) values, \"better\" model . output function {ggplot2} object , thus, can modified (e.g. change themes) {ggplot2}.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"","code":"ggcoefstats( x, statistic = NULL, conf.int = TRUE, conf.level = 0.95, digits = 2L, exclude.intercept = FALSE, effectsize.type = \"eta\", meta.analytic.effect = FALSE, meta.type = \"parametric\", bf.message = TRUE, sort = \"none\", xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, only.significant = FALSE, point.args = list(size = 3, color = \"blue\", na.rm = TRUE), errorbar.args = list(height = 0, na.rm = TRUE), vline = TRUE, vline.args = list(linewidth = 1, linetype = \"dashed\"), stats.labels = TRUE, stats.label.color = NULL, stats.label.args = list(size = 3, direction = \"y\", min.segment.length = 0, na.rm = TRUE), package = \"RColorBrewer\", palette = \"Dark2\", ggtheme = ggstatsplot::theme_ggstatsplot(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"x model object tidied, tidy data frame regression model. Function internally uses parameters::model_parameters() get tidy data frame. data frame, must contain minimum two columns named term (names predictors) estimate (corresponding estimates coefficients quantities interest). statistic Relevant statistic model (\"t\", \"f\", \"z\", \"chi\") label. Relevant x data frame. conf.int Logical. Decides whether display confidence intervals error bars (Default: TRUE). conf.level Numeric deciding level confidence credible intervals (Default: 0.95). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). exclude.intercept Logical decides whether intercept excluded plot (Default: FALSE). effectsize.type es_type argument parameters::model_parameters(). Defaults \"eta\", relevant ANOVA-like objects. meta.analytic.effect Logical decides whether subtitle meta-analysis via linear (mixed-effects) models (default: FALSE). TRUE, input argument subtitle ignored. mostly relevant data frame estimates standard errors entered. meta.type Type statistics used carry random-effects meta-analysis. \"parametric\" (default), metafor::rma() used. \"robust\", metaplus::metaplus() used. \"bayes\", metaBMA::meta_random() used. bf.message Logical decides whether results running Bayesian meta-analysis assuming effect size d varies across studies standard deviation t (.e., random-effects analysis) displayed caption. Defaults TRUE. sort \"none\" (default) sort, \"ascending\" sort increasing coefficient value, \"descending\" sort decreasing coefficient value. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. input argument ignored meta.analytic.effect set TRUE. caption text plot caption. argument relevant bf.message = FALSE. .significant TRUE, stats labels significant effects shown (Default: FALSE). can helpful large number regression coefficients displayed single plot. point.args list additional aesthetic arguments passed ggplot2::geom_point(). errorbar.args Additional arguments passed geom_errorbarh() geom. Please see documentation function know arguments. vline Decides whether display vertical line (Default: \"TRUE\"). vline.args Additional arguments passed geom_vline geom. Please see documentation function know arguments. stats.labels Logical. Decides whether statistic p-values coefficient attached dot text label using {ggrepel} (Default: TRUE). stats.label.color Color labels. set NULL, colors chosen specified package (Default: \"RColorBrewer\") palette (Default: \"Dark2\"). stats.label.args Additional arguments passed ggrepel::geom_label_repel(). package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ... Additional arguments tidying method. , see parameters::model_parameters().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"case want carry meta-analysis, asked install needed packages ({metafor}, {metaplus}, {metaBMA}) unavailable. rows regression estimates either following quantities NA removed labels requested: estimate, statistic, p.value. Given rapid pace new methods added packages, recommended install development versions {easystats} packages using install_latest() function {easystats}.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"random-effects-meta-analysis","dir":"Reference","previous_headings":"","what":"Random-effects meta-analysis","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"","code":"# for reproducibility set.seed(123) library(lme4) #> Loading required package: Matrix # model object mod <- lm(formula = mpg ~ cyl * am, data = mtcars) # creating a plot p <- ggcoefstats(mod) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> NULL #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> # A tibble: 4 × 11 #> term estimate std.error conf.level conf.low conf.high statistic #> #> 1 (Intercept) 30.9 3.19 0.95 24.3 37.4 9.68 #> 2 cyl -1.98 0.449 0.95 -2.89 -1.06 -4.40 #> 3 am 10.2 4.30 0.95 1.36 19.0 2.36 #> 4 cyl:am -1.31 0.707 0.95 -2.75 0.143 -1.85 #> df.error p.value conf.method expression #> #> 1 28 1.95e-10 Wald #> 2 28 1.41e- 4 Wald #> 3 28 2.53e- 2 Wald #> 4 28 7.55e- 2 Wald #> #> $glance_data #> # A tibble: 1 × 8 #> AIC AICc BIC R2 R2_adjusted RMSE Sigma expression #> #> 1 166. 168. 173. 0.785 0.762 2.75 2.94 #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # further arguments can be passed to `parameters::model_parameters()` ggcoefstats(lmer(Reaction ~ Days + (Days | Subject), sleepstudy), effects = \"fixed\")"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualization of a correlation matrix — ggcorrmat","title":"Visualization of a correlation matrix — ggcorrmat","text":"Correlation matrix containing results pairwise correlation tests. want data frame (grouped) correlation matrix, use correlation::correlation() instead. can also grouped analysis used output dplyr::group_by().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualization of a correlation matrix — ggcorrmat","text":"","code":"ggcorrmat( data, cor.vars = NULL, cor.vars.names = NULL, matrix.type = \"upper\", type = \"parametric\", tr = 0.2, partial = FALSE, digits = 2L, sig.level = 0.05, conf.level = 0.95, bf.prior = 0.707, p.adjust.method = \"holm\", pch = \"cross\", ggcorrplot.args = list(method = \"square\", outline.color = \"black\", pch.cex = 14), package = \"RColorBrewer\", palette = \"Dark2\", colors = c(\"#E69F00\", \"white\", \"#009E73\"), ggtheme = ggstatsplot::theme_ggstatsplot(), ggplot.component = NULL, title = NULL, subtitle = NULL, caption = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualization of a correlation matrix — ggcorrmat","text":"data data frame variables specified taken. cor.vars List variables correlation matrix computed visualized. NULL (default), numeric variables data used. cor.vars.names Optional list names used cor.vars. names entered order. matrix.type Character, \"upper\" (default), \"lower\", \"full\", display full matrix, lower triangular upper triangular matrix. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. partial Can TRUE partial correlations. Bayesian partial correlations, \"full\" instead pseudo-Bayesian partial correlations (.e., Bayesian correlation based frequentist partialization) returned. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). sig.level Significance level (Default: 0.05). p-value p-value matrix bigger sig.level, corresponding correlation coefficient regarded insignificant flagged plot. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pch Decides point shape used insignificant correlation coefficients (valid insig = \"pch\"). Default: pch = \"cross\". ggcorrplot.args list additional (mostly aesthetic) arguments passed ggcorrplot::ggcorrplot() function. list avoid following arguments since already internally used: corr, method, p.mat, sig.level, ggtheme, colors, lab, pch, legend.title, digits. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). colors vector 3 colors low, mid, high correlation values. set NULL, manual specification colors turned 3 colors specified palette package selected. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Visualization of a correlation matrix — ggcorrmat","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"correlation-analyses","dir":"Reference","previous_headings":"","what":"Correlation analyses","title":"Visualization of a correlation matrix — ggcorrmat","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualization of a correlation matrix — ggcorrmat","text":"","code":"set.seed(123) library(ggcorrplot) ggcorrmat(iris)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Dot plot/chart for labeled numeric data. — ggdotplotstats","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"dot chart (described William S. Cleveland) statistical details one-sample test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"","code":"ggdotplotstats( data, x, y, xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, type = \"parametric\", test.value = 0, bf.prior = 0.707, bf.message = TRUE, effsize.type = \"g\", conf.level = 0.95, tr = 0.2, digits = 2L, results.subtitle = TRUE, point.args = list(color = \"black\", size = 3, shape = 16), centrality.plotting = TRUE, centrality.type = type, centrality.line.args = list(color = \"blue\", linewidth = 1, linetype = \"dashed\"), ggplot.component = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. y Label grouping variable. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. point.args list additional aesthetic arguments passed ggplot2::geom_point(). centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"one-sample-tests","dir":"Reference","previous_headings":"","what":"One-sample tests","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- ggdotplotstats( data = ggplot2::mpg, x = cty, y = manufacturer, title = \"Fuel economy data\", xlab = \"city miles per gallon\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 15 #> mu statistic df.error p.value method alternative effectsize #> #> 1 0 17.1 14 9.07e-11 One Sample t-test two.sided Hedges' g #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 4.17 0.95 2.56 5.76 ncp t 15 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test 16.3 0.95 14.1 18.4 1 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 87122783. Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 18.3 15 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":null,"dir":"Reference","previous_headings":"","what":"Histogram for distribution of a numeric variable — gghistostats","title":"Histogram for distribution of a numeric variable — gghistostats","text":"Histogram statistical details one-sample test included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Histogram for distribution of a numeric variable — gghistostats","text":"","code":"gghistostats( data, x, binwidth = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, type = \"parametric\", test.value = 0, bf.prior = 0.707, bf.message = TRUE, effsize.type = \"g\", conf.level = 0.95, tr = 0.2, digits = 2L, ggtheme = ggstatsplot::theme_ggstatsplot(), results.subtitle = TRUE, bin.args = list(color = \"black\", fill = \"grey50\", alpha = 0.7), centrality.plotting = TRUE, centrality.type = type, centrality.line.args = list(color = \"blue\", linewidth = 1, linetype = \"dashed\"), ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Histogram for distribution of a numeric variable — gghistostats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. binwidth width histogram bins. Can specified numeric value, function calculates width x. default use max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data. xlab Label x axis variable. NULL (default), variable name x used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. bin.args list additional aesthetic arguments passed stat_bin used display bins. specify binwidth argument list since already specified using dedicated argument. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Histogram for distribution of a numeric variable — gghistostats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"one-sample-tests","dir":"Reference","previous_headings":"","what":"One-sample tests","title":"Histogram for distribution of a numeric variable — gghistostats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Histogram for distribution of a numeric variable — gghistostats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- gghistostats( data = ToothGrowth, x = len, xlab = \"Tooth length\", centrality.type = \"np\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 15 #> mu statistic df.error p.value method alternative effectsize #> #> 1 0 19.1 59 6.94e-27 One Sample t-test two.sided Hedges' g #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 2.43 0.95 1.92 2.93 ncp t 60 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test 18.7 0.95 16.7 20.7 1 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 4.86e23 Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 54.5 60 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":null,"dir":"Reference","previous_headings":"","what":"Pie charts with statistical tests — ggpiestats","title":"Pie charts with statistical tests — ggpiestats","text":"Pie charts categorical data statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pie charts with statistical tests — ggpiestats","text":"","code":"ggpiestats( data, x, y = NULL, counts = NULL, type = \"parametric\", paired = FALSE, results.subtitle = TRUE, label = \"percentage\", label.args = list(direction = \"both\"), label.repel = FALSE, digits = 2L, proportion.test = results.subtitle, digits.perc = 0L, bf.message = TRUE, ratio = NULL, conf.level = 0.95, sampling.plan = \"indepMulti\", fixed.margin = \"rows\", prior.concentration = 1, title = NULL, subtitle = NULL, caption = NULL, legend.title = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pie charts with statistical tests — ggpiestats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). counts variable data containing counts, NULL row represents single observation. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). label.repel Whether labels repelled using {ggrepel} package. can helpful case overlapping labels. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. legend.title Title text legend. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Pie charts with statistical tests — ggpiestats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"contingency-table-analyses","dir":"Reference","previous_headings":"","what":"Contingency table analyses","title":"Pie charts with statistical tests — ggpiestats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"two-way-table","dir":"Reference","previous_headings":"","what":"two-way table","title":"Pie charts with statistical tests — ggpiestats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"one-way-table","dir":"Reference","previous_headings":"","what":"one-way table","title":"Pie charts with statistical tests — ggpiestats","text":"Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Pie charts with statistical tests — ggpiestats","text":"","code":"# for reproducibility set.seed(123) # one sample goodness of fit proportion test p <- ggpiestats(mtcars, vs) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 0.5 1 0.480 Chi-squared test for given probabilities Pearson's C #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.124 0.95 0 0.426 ncp chisq 32 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 4 #> bf10 prior.scale method expression #> #> 1 0.180 1 Bayesian one-way contingency table analysis #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 2 × 4 #> vs counts perc .label #> #> 1 1 14 43.8 44% #> 2 0 18 56.2 56% #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # association test (or contingency table analysis) ggpiestats(mtcars, vs, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Scatterplot with marginal distributions and statistical results — ggscatterstats","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"Scatterplots {ggplot2} combined marginal distributions plots statistical details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"","code":"ggscatterstats( data, x, y, type = \"parametric\", conf.level = 0.95, bf.prior = 0.707, bf.message = TRUE, tr = 0.2, digits = 2L, results.subtitle = TRUE, label.var = NULL, label.expression = NULL, marginal = TRUE, point.args = list(size = 3, alpha = 0.4, stroke = 0), point.width.jitter = 0, point.height.jitter = 0, point.label.args = list(size = 3, max.overlaps = 1e+06), smooth.line.args = list(linewidth = 1.5, color = \"blue\", method = \"lm\", formula = y ~ x), xsidehistogram.args = list(fill = \"#009E73\", color = \"black\", na.rm = TRUE), ysidehistogram.args = list(fill = \"#D55E00\", color = \"black\", na.rm = TRUE), xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x column data containing explanatory variable plotted x-axis. y column data containing response (outcome) variable plotted y-axis. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label.var Variable use points labels entered symbol (e.g. var1). label.expression expression evaluating logical vector determines subset data points label (e.g. y < 4 & z < 20). using argument purrr::pmap(), provide quoted expression (e.g. quote(y < 4 & z < 20)). marginal Decides whether marginal distributions plotted axes using {ggside} functions. default TRUE. package {ggside} must already installed user. point.args list additional aesthetic arguments passed ggplot2::geom_point(). point.width.jitter, point.height.jitter Degree jitter x y direction, respectively. Defaults 0 (0%) resolution data. Note jitter specified point.args information passed two different geoms: one displaying points displaying *labels points. point.label.args list additional aesthetic arguments passed ggrepel::geom_label_repel()geom used display labels. smooth.line.args list additional aesthetic arguments passed geom_smooth geom used display regression line. xsidehistogram.args, ysidehistogram.args list arguments passed respective geom_s {ggside} package change marginal distribution histograms plots. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"plot uses ggrepel::geom_label_repel() attempt keep labels -lapping largest degree possible. consequence plot times slow massively (plot file grow size) lot labels overlap.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"correlation-analyses","dir":"Reference","previous_headings":"","what":"Correlation analyses","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"","code":"set.seed(123) # creating a plot p <- ggscatterstats( iris, x = Sepal.Width, y = Petal.Length, label.var = Species, label.expression = Sepal.Length > 7.6 ) + ggplot2::geom_rug(sides = \"b\") #> Registered S3 method overwritten by 'ggside': #> method from #> +.gg ggplot2 # looking at the plot p #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> parameter1 parameter2 effectsize estimate conf.level conf.low #> #> 1 Sepal.Width Petal.Length Pearson correlation -0.428 0.95 -0.551 #> conf.high statistic df.error p.value method n.obs #> #> 1 -0.288 -5.77 148 0.0000000451 Pearson correlation 150 #> conf.method expression #> #> 1 normal #> #> $caption_data #> # A tibble: 1 × 17 #> parameter1 parameter2 effectsize estimate conf.level #> #> 1 Sepal.Width Petal.Length Bayesian Pearson correlation -0.422 0.95 #> conf.low conf.high pd rope.percentage prior.distribution prior.location #> #> 1 -0.551 -0.290 1 0 beta 1.41 #> prior.scale bf10 method n.obs conf.method expression #> #> 1 1.41 312665. Bayesian Pearson correlation 150 HDI #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":null,"dir":"Reference","previous_headings":"","what":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"{ggstatsplot} extension {ggplot2} package. creates graphics details statistical tests included plots . provides easier API generate information-rich plots statistical analysis continuous (violin plots, scatterplots, histograms, dot plots, dot--whisker plots) categorical (pie bar charts) data. Currently, supports common types statistical tests: parametric, nonparametric, robust, Bayesian versions t-test/ANOVA, correlation analyses, contingency table analysis, meta-analysis, regression analyses.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"ggstatsplot main functions : ggbetweenstats() function produce information-rich comparison plot different groups conditions {ggplot2} details statistical tests subtitle. ggwithinstats() function produce information-rich comparison plot within different groups conditions {ggplot2} details statistical tests subtitle. ggscatterstats() function produce {ggplot2} scatterplots along marginal distribution plots {ggside} package details statistical tests subtitle. ggpiestats() function produce pie chart details statistical tests subtitle. ggbarstats() function produce stacked bar chart details statistical tests subtitle. gghistostats() function produce histogram single variable results one sample test displayed subtitle. ggdotplotstats() function produce Cleveland-style dot plots/charts single variable labels results one sample test displayed subtitle. ggcorrmat() function visualize correlation matrix. ggcoefstats() function visualize results regression analyses. combine_plots() helper function combine multiple {ggstatsplot} plots using patchwork::wrap_plots(). References: Patil (2021) doi:10.21105/joss.03236 . documentation, see dedicated Website.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"Maintainer: Indrajeet Patil patilindrajeet.science@gmail.com (ORCID) [copyright holder] contributors: Chuck Powell ibecav@gmail.com (ORCID) [contributor]","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Box/Violin plots for repeated measures comparisons — ggwithinstats","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"combination box violin plots along raw (unjittered) data points within-subjects designs statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"","code":"ggwithinstats( data, x, y, type = \"parametric\", pairwise.display = \"significant\", p.adjust.method = \"holm\", effsize.type = \"unbiased\", bf.prior = 0.707, bf.message = TRUE, results.subtitle = TRUE, xlab = NULL, ylab = NULL, caption = NULL, title = NULL, subtitle = NULL, digits = 2L, conf.level = 0.95, nboot = 100L, tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = list(size = 5, color = \"darkred\"), centrality.label.args = list(size = 3, nudge_x = 0.4, segment.linetype = 4), centrality.path = TRUE, centrality.path.args = list(linewidth = 1, color = \"red\", alpha = 0.5), point.args = list(size = 3, alpha = 0.5, na.rm = TRUE), point.path = TRUE, point.path.args = list(alpha = 0.5, linetype = \"dashed\"), boxplot.args = list(width = 0.2, alpha = 0.5, na.rm = TRUE), violin.args = list(width = 0.5, alpha = 0.2, na.rm = TRUE), ggsignif.args = list(textsize = 3, tip_length = 0.01, na.rm = TRUE), ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. caption text plot caption. argument relevant bf.message = FALSE. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.point.args, centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. centrality.path.args, point.path.args list additional aesthetic arguments passed ggplot2::geom_path() connecting raw data points mean points. point.args list additional aesthetic arguments passed ggplot2::geom_point(). point.path, centrality.path Logical decides whether individual data points means, respectively, connected using ggplot2::geom_path(). default TRUE. Note point.path argument relevant two groups (.e., case t-test). case large number data points, advisable set point.path = FALSE lines can overwhelm plot. boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"centrality-measures","dir":"Reference","previous_headings":"","what":"Centrality measures","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"two-sample-tests","dir":"Reference","previous_headings":"","what":"Two-sample tests","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"one-way-anova","dir":"Reference","previous_headings":"","what":"One-way ANOVA","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects-1","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects-1","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"pairwise-comparison-tests","dir":"Reference","previous_headings":"","what":"Pairwise comparison tests","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects-2","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects-2","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # create a plot p <- ggwithinstats( data = filter(bugs_long, condition %in% c(\"HDHF\", \"HDLF\")), x = condition, y = desire, type = \"np\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> parameter1 parameter2 statistic p.value method alternative #> #> 1 desire condition 1796 0.000430 Wilcoxon signed rank test two.sided #> effectsize estimate conf.level conf.low conf.high conf.method n.obs #> #> 1 r (rank biserial) 0.487 0.95 0.285 0.648 normal 90 #> expression #> #> 1 #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # modifying defaults ggwithinstats( data = bugs_long, x = condition, y = desire, type = \"robust\" ) # you can remove a specific geom by setting `width` to `0` for that geom ggbetweenstats( data = bugs_long, x = condition, y = desire, # to remove violin plot violin.args = list(width = 0, linewidth = 0), # to remove boxplot boxplot.args = list(width = 0), # to remove points point.args = list(alpha = 0) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped bar charts with statistical tests — grouped_ggbarstats","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"Helper function ggstatsplot::ggbarstats() apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"","code":"grouped_ggbarstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggbarstats sample.size.label.args Additional aesthetic arguments passed ggplot2::geom_text(). x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). legend.title Title text legend. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). counts variable data containing counts, NULL row represents single observation. ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # let's create a smaller data frame first diamonds_short <- ggplot2::diamonds %>% filter(cut %in% c(\"Very Good\", \"Ideal\")) %>% filter(clarity %in% c(\"SI1\", \"SI2\", \"VS1\", \"VS2\")) %>% sample_frac(size = 0.05) grouped_ggbarstats( data = diamonds_short, x = color, y = clarity, grouping.var = cut, plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"Helper function ggstatsplot::ggbetweenstats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"","code":"grouped_ggbetweenstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggbetweenstats xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). centrality.point.args,centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). var.equal logical variable indicating whether treat two variances equal. TRUE pooled variance used estimate variance otherwise Welch (Satterthwaite) approximation degrees freedom used. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) grouped_ggbetweenstats( data = filter(ggplot2::mpg, drv != \"4\"), x = year, y = hwy, grouping.var = drv ) # modifying individual plots using `ggplot.component` argument grouped_ggbetweenstats( data = filter( movies_long, genre %in% c(\"Action\", \"Comedy\"), mpaa %in% c(\"R\", \"PG\") ), x = genre, y = rating, grouping.var = mpaa, ggplot.component = scale_y_continuous( breaks = seq(1, 9, 1), limits = (c(1, 9)) ) ) #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale. #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"Helper function ggstatsplot::ggcorrmat() apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"","code":"grouped_ggcorrmat( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"data data frame variables specified taken. ... Arguments passed ggcorrmat cor.vars List variables correlation matrix computed visualized. NULL (default), numeric variables data used. cor.vars.names Optional list names used cor.vars. names entered order. partial Can TRUE partial correlations. Bayesian partial correlations, \"full\" instead pseudo-Bayesian partial correlations (.e., Bayesian correlation based frequentist partialization) returned. matrix.type Character, \"upper\" (default), \"lower\", \"full\", display full matrix, lower triangular upper triangular matrix. sig.level Significance level (Default: 0.05). p-value p-value matrix bigger sig.level, corresponding correlation coefficient regarded insignificant flagged plot. colors vector 3 colors low, mid, high correlation values. set NULL, manual specification colors turned 3 colors specified palette package selected. pch Decides point shape used insignificant correlation coefficients (valid insig = \"pch\"). Default: pch = \"cross\". ggcorrplot.args list additional (mostly aesthetic) arguments passed ggcorrplot::ggcorrplot() function. list avoid following arguments since already internally used: corr, method, p.mat, sig.level, ggtheme, colors, lab, pch, legend.title, digits. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"","code":"set.seed(123) grouped_ggcorrmat( data = iris, grouping.var = Species, type = \"robust\", p.adjust.method = \"holm\", plotgrid.args = list(ncol = 1L), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"Helper function ggstatsplot::ggdotplotstats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"","code":"grouped_ggdotplotstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggdotplotstats y Label grouping variable. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. x numeric variable data frame data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). xlab Label x axis variable. NULL (default), variable name x used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ylab Labels y axis variable. NULL (default), variable name y used. point.args list additional aesthetic arguments passed ggplot2::geom_point(). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # removing factor level with very few no. of observations df <- filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\", \"8\")) # plot grouped_ggdotplotstats( data = df, x = cty, y = manufacturer, grouping.var = cyl, test.value = 15.5 )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"Helper function ggstatsplot::gghistostats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"","code":"grouped_gghistostats( data, x, grouping.var, binwidth = NULL, plotgrid.args = list(), annotation.args = list(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. grouping.var single grouping variable. binwidth width histogram bins. Can specified numeric value, function calculates width x. default use max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation(). ... Arguments passed gghistostats bin.args list additional aesthetic arguments passed stat_bin used display bins. specify binwidth argument list since already specified using dedicated argument. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). xlab Label x axis variable. NULL (default), variable name x used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"","code":"# for reproducibility set.seed(123) # plot grouped_gghistostats( data = iris, x = Sepal.Length, test.value = 5, grouping.var = Species, plotgrid.args = list(nrow = 1), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped pie charts with statistical tests — grouped_ggpiestats","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"Helper function ggstatsplot::ggpiestats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"","code":"grouped_ggpiestats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggpiestats x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). label.repel Whether labels repelled using {ggrepel} package. can helpful case overlapping labels. legend.title Title text legend. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). counts variable data containing counts, NULL row represents single observation. ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"","code":"set.seed(123) # grouped one-sample proportion test grouped_ggpiestats(mtcars, x = cyl, grouping.var = am)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"Grouped scatterplots {ggplot2} combined marginal distribution plots statistical details added subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"","code":"grouped_ggscatterstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggscatterstats label.var Variable use points labels entered symbol (e.g. var1). label.expression expression evaluating logical vector determines subset data points label (e.g. y < 4 & z < 20). using argument purrr::pmap(), provide quoted expression (e.g. quote(y < 4 & z < 20)). point.label.args list additional aesthetic arguments passed ggrepel::geom_label_repel()geom used display labels. smooth.line.args list additional aesthetic arguments passed geom_smooth geom used display regression line. marginal Decides whether marginal distributions plotted axes using {ggside} functions. default TRUE. package {ggside} must already installed user. point.width.jitter,point.height.jitter Degree jitter x y direction, respectively. Defaults 0 (0%) resolution data. Note jitter specified point.args information passed two different geoms: one displaying points displaying *labels points. xsidehistogram.args,ysidehistogram.args list arguments passed respective geom_s {ggside} package change marginal distribution histograms plots. x column data containing explanatory variable plotted x-axis. y column data containing response (outcome) variable plotted y-axis. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. point.args list additional aesthetic arguments passed ggplot2::geom_point(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"","code":"# to ensure reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) grouped_ggscatterstats( data = filter(movies_long, genre == \"Comedy\" | genre == \"Drama\"), x = length, y = rating, type = \"robust\", grouping.var = genre, ggplot.component = list(geom_rug(sides = \"b\")) ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # using labeling # (also show how to modify basic plot from within function call) grouped_ggscatterstats( data = filter(ggplot2::mpg, cyl != 5), x = displ, y = hwy, grouping.var = cyl, type = \"robust\", label.var = manufacturer, label.expression = hwy > 25 & displ > 2.5, ggplot.component = scale_y_continuous(sec.axis = dup_axis()) ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # labeling without expression grouped_ggscatterstats( data = filter(movies_long, rating == 7, genre %in% c(\"Drama\", \"Comedy\")), x = budget, y = length, grouping.var = genre, bf.message = FALSE, label.var = \"title\", annotation.args = list(tag_levels = \"a\") ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"combined plot comparison plot created levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"","code":"grouped_ggwithinstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggwithinstats point.path,centrality.path Logical decides whether individual data points means, respectively, connected using ggplot2::geom_path(). default TRUE. Note point.path argument relevant two groups (.e., case t-test). case large number data points, advisable set point.path = FALSE lines can overwhelm plot. centrality.path.args,point.path.args list additional aesthetic arguments passed ggplot2::geom_path() connecting raw data points mean points. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). centrality.point.args,centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) # the most basic function call grouped_ggwithinstats( data = filter(bugs_long, condition %in% c(\"HDHF\", \"HDLF\")), x = condition, y = desire, grouping.var = gender, type = \"np\", # additional modifications for **each** plot using `{ggplot2}` functions ggplot.component = scale_y_continuous(breaks = seq(0, 10, 1), limits = c(0, 10)) ) #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale. #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Edgar Anderson's Iris Data in long format. — iris_long","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"Edgar Anderson's Iris Data long format.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"","code":"iris_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"data frame 600 rows 5 variables id. Dummy identity number flower (150 flowers total). Species. species Iris setosa, versicolor, virginica. condition. Factor giving detailed description attribute (Four levels: \"Petal.Length\", \"Petal.Width\", \"Sepal.Length\", \"Sepal.Width\"). attribute. attribute measured (\"Sepal\" \"Pepal\"). measure. aspect attribute measured (\"Length\" \"Width\"). value. Value measurement.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"famous (Fisher's Anderson's) iris data set gives measurements centimeters variables sepal length width petal length width, respectively, 50 flowers 3 species iris. species Iris setosa, versicolor, virginica. modified dataset {datasets} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"","code":"dim(iris_long) #> [1] 600 6 head(iris_long) #> # A tibble: 6 × 6 #> id Species condition attribute measure value #> #> 1 1 setosa Sepal.Length Sepal Length 5.1 #> 2 2 setosa Sepal.Length Sepal Length 4.9 #> 3 3 setosa Sepal.Length Sepal Length 4.7 #> 4 4 setosa Sepal.Length Sepal Length 4.6 #> 5 5 setosa Sepal.Length Sepal Length 5 #> 6 6 setosa Sepal.Length Sepal Length 5.4 dplyr::glimpse(iris_long) #> Rows: 600 #> Columns: 6 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1… #> $ Species setosa, setosa, setosa, setosa, setosa, setosa, setosa, seto… #> $ condition Sepal.Length, Sepal.Length, Sepal.Length, Sepal.Length, Sepa… #> $ attribute Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepa… #> $ measure Length, Length, Length, Length, Length, Length, Length, Leng… #> $ value 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, …"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Movie information and user ratings from IMDB.com (long format). — movies_long","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"Movie information user ratings IMDB.com (long format).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"","code":"movies_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"data frame 1,579 rows 8 variables title. Title movie. year. Year release. budget. Total budget (known) US dollars length. Length minutes. rating. Average IMDB user rating. votes. Number IMDB users rated movie. mpaa. MPAA rating. genre. Different genres movies (action, animation, comedy, drama, documentary, romance, short).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"https://CRAN.R-project.org/package=ggplot2movies","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"Modified dataset {ggplot2movies} package. internet movie database (IMDB) website devoted collecting movie data supplied studios fans. claims biggest movie database web run amazon.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"","code":"dim(movies_long) #> [1] 1579 8 head(movies_long) #> # A tibble: 6 × 8 #> title year length budget rating votes mpaa genre #> #> 1 Shawshank Redemption, The 1994 142 25 9.1 149494 R Drama #> 2 Lord of the Rings: The Return o… 2003 251 94 9 103631 PG-13 Acti… #> 3 Lord of the Rings: The Fellowsh… 2001 208 93 8.8 157608 PG-13 Acti… #> 4 Lord of the Rings: The Two Towe… 2002 223 94 8.8 114797 PG-13 Acti… #> 5 Pulp Fiction 1994 168 8 8.8 132745 R Drama #> 6 Schindler's List 1993 195 25 8.8 97667 R Drama dplyr::glimpse(movies_long) #> Rows: 1,579 #> Columns: 8 #> $ title \"Shawshank Redemption, The\", \"Lord of the Rings: The Return of … #> $ year 1994, 2003, 2001, 2002, 1994, 1993, 1977, 1980, 1968, 2002, 196… #> $ length 142, 251, 208, 223, 168, 195, 125, 129, 158, 135, 93, 113, 108,… #> $ budget 25.0, 94.0, 93.0, 94.0, 8.0, 25.0, 11.0, 18.0, 5.0, 3.3, 1.8, 5… #> $ rating 9.1, 9.0, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.7, 8.7, 8.7, 8.7, 8.6… #> $ votes 149494, 103631, 157608, 114797, 132745, 97667, 134640, 103706, … #> $ mpaa R, PG-13, PG-13, PG-13, R, R, PG, PG, PG-13, R, PG, R, R, R, R,… #> $ genre Drama, Action, Action, Action, Drama, Drama, Action, Action, Dr…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. statsExpressions %>%, pairwise_comparisons","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Default theme used in {ggstatsplot} — theme_ggstatsplot","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"Common theme used across plots generated {ggstatsplot} assumed author aesthetically pleasing user. theme wrapper around ggplot2::theme_bw(). {ggstatsplot} functions ggtheme parameter let choose different theme.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"","code":"theme_ggstatsplot()"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"ggplot object.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"","code":"library(ggplot2) ggplot(mtcars, aes(wt, mpg)) + geom_point() + theme_ggstatsplot()"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-01259000","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.5.9000","title":"ggstatsplot 0.12.5.9000","text":"N.B. statistical analysis ggstatsplot carried statsExpressions. Thus, see changes related statistical expressions, read NEWS package: https://indrajeetpatil.github.io/statsExpressions/news/index.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0125","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.5","title":"ggstatsplot 0.12.5","text":"CRAN release: 2024-11-01","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.5","text":"extract_stats() returns list class ggstatsplot_stats contains statistical summaries expressions given plot. extract_stats(), extract_subtitle(), extract_caption() now works box grouped plots well.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-12-5","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.12.5","text":"ggpiestats() ggbarstats() now respect ratio() argument proportion tests run case two-way contingency tables (#818).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.5","text":"Unused dataset removed: bugs_wide.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0124","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.4","title":"ggstatsplot 0.12.4","text":"CRAN release: 2024-07-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.4","text":"feature superimpose normality curve histogram (gghistostats()) removed. feature always felt like ad hoc addition plot, nothing key statistical analysis question (checking normality distribution).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.4","text":"Updates code fix warnings coming via updates easystats packages.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-12-4","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.12.4","text":"Empty groups factors longer dropped ggpiestats() ggbarstats() (#935).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0123","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.3","title":"ggstatsplot 0.12.3","text":"CRAN release: 2024-04-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.3","text":"cryptic useful parameter k renamed digits improve discoverability. consistent functions, ggpiestats() ggbarstats() now default two-sided alternative hypothesis.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0122","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.2","title":"ggstatsplot 0.12.2","text":"CRAN release: 2024-01-14 user-visible changes. Maintenance-release.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0121","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.1","title":"ggstatsplot 0.12.1","text":"CRAN release: 2023-09-20","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.1","text":"Maintenance updates changes upstream dependencies. ggbarstats() gains sample.size.label.args parameter pass additional arguments ggplot2::geom_text().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0120","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.0","title":"ggstatsplot 0.12.0","text":"CRAN release: 2023-08-07","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-12-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.12.0","text":"internally consistent, plot.type argument removed ggbetweenstats(), since argument exists ggwithinstats(). argument also redundant. Since removing specific geom straightforward using *.args arguments. Examples two functions illustrate . ggbetweenstats() ggwithinstats() retire pairwise.comparisons argument since redundant. order turn showing pairwise comparisons, can now use pairwise.display = \"none\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-12-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.12.0","text":"ggbetweenstats() gets boxplot.args argument pass additional arguments underlying geom function. also fixes regression introduced 0.11.1 release outlier points displayed along box plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0111","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.11.1","title":"ggstatsplot 0.11.1","text":"CRAN release: 2023-04-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-11-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.11.1","text":"outlier tagging functionality ggbetweenstats() ggwithinstats() removed. crude useful reliable, users instead prefer informative methods (e.g. performance::check_outliers()).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-11-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.11.1","text":"Fix failures due changes parameters.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0110","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.11.0","title":"ggstatsplot 0.11.0","text":"CRAN release: 2023-02-15","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-11-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.11.0","text":"minimum needed R version now bumped R 4.1 crucial dependency (pbkrtest) requires R version.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-11-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.11.0","text":"Maintenance release catch ggplot2 easystats updates.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0100","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.10.0","title":"ggstatsplot 0.10.0","text":"CRAN release: 2022-11-27","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.10.0","text":"output parameter functions removed. functions now return plot, contains necessary details previously extracted using output argument. can extract necessary details (including expressions containing statistical details) plot using extract_stats() function. two additional helpers get expressions: extract_subtitle() extract_caption().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.10.0","text":"xfill yfill arguments ggscatterstats() removed. can specify aesthetic modifications side histograms scatter plot using xsidehistogram.args ysidehistogram.args arguments. Updates changes made latest ggplot2 release (3.4.0).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-095","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.5","title":"ggstatsplot 0.9.5","text":"CRAN release: 2022-10-16","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.5","text":"Due changes underlying API parameters, effsize argument renamed effectsize.type. Removes unnecessary re-exports tidyverse operators.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.5","text":"Fixes tests changes dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-094","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.4","title":"ggstatsplot 0.9.4","text":"CRAN release: 2022-08-11","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.4","text":"Internal housekeeping adjust changes upstream dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-093","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.3","title":"ggstatsplot 0.9.3","text":"CRAN release: 2022-05-27","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-3","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.3","text":"Hot fix release correct failing example CRAN daily checks.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-092","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.2","title":"ggstatsplot 0.9.2","text":"CRAN release: 2022-05-21","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.2","text":"pairwise_comparions() function implementation now lives statsExpressions package, although continue exported ggstatsplot package. details pairwise test ggbetweenstats() ggwithinstats() functions now displayed label secondary axis. Previously, information displayed caption. Given caption already contained Bayesian test details, becoming difficult stack different expressions top . avoid unnecessary code complexity also avoid crowded caption, decision made. Additionally, pairwise test label slightly abbreviated, label significance bars. done let text overwhelm numeric values, latter important.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-091","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.1","title":"ggstatsplot 0.9.1","text":"CRAN release: 2022-01-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.1","text":"Moves {PMCMRplus} package Imports Suggests. , , user, wish use pairwise comparisons ggbetweenstats() ggwithinstats(), need download package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.1","text":"keep documentation maintainable, number vignettes either removed longer evaluated code reported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-090","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.0","title":"ggstatsplot 0.9.0","text":"CRAN release: 2021-10-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-9-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.9.0","text":"pairwise_comparisons() function carrying one-way pairwise comparisons now moved ggstatsplot {pairwiseComparisons} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.9.0","text":"number effect size estimates confidence intervals changed due respective changes made effectsize package version 0.5 release. full details changes, see: https://easystats.github.io/effectsize/news/index.html reason, effect size one-way contingency table changed Cramer’s V Pearson’s C.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.0","text":"plotting marginal distributions ggscatterstats, ggstatsplot now relies ggside package instead ggExtra. done remove glaring inconsistency API. functions ggstatsplot produced ggplot objects modified ggplot2 functions, except ggscatterstats, led lot confusion among users (e.g. #28). change gets rid inconsistency. comes cost: marginal.type argument lets change type marginal distribution graphic histogram possible option. Note breaking change. past code continue work now always produce histogram instead marginal graphic might chosen. Minimum needed R version now 4.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.0","text":"Online vignette combine_plots removed. case want create grid plots, highly recommended use patchwork package directly wrapper around mostly useful ggstatsplot plots. ggscatterstats labeling arguments accept unquoted inputs now, quoted string inputs. Allowing bad design choice past since functions ggstatsplot, inspired tidyverse, expect unquoted (x) - quoted (\"x\") - arguments. function odd one . Gets rid ipmisc dependency. Removes movies_wide dataset, virtually identical movies_long dataset used anywhere package. Also removes unused VR_dilemma dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-080","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.8.0","title":"ggstatsplot 0.8.0","text":"CRAN release: 2021-06-09","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-8-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.8.0","text":"Adds extract_stats function extract dataframes containing statistical details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-8-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.8.0","text":"finally publication ggstatsplot package! https://joss.theoj.org/papers/10.21105/joss.03167 ggcoefstats function defaults NULL xlab ylab arguments, lets users change labels wish . Additionally, x-axis label, specified, now defaults \"estimate\". Whether estimate corresponds regression coefficient effect size like partial eta-squared clear label . reduce dependency load, ggcorrplot moves Imports Suggests. bar.fill argument gghistostats retired favor new bin.args argument can used pass aesthetic arguments ggplot2::stat_bin. ggstatsplot.layer argument retired. user chooses certain ggplot2 theme, means want theme, ggstatsplot’s varnish . previous behavior undesirable. backward compatible change, plots look different.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-8-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.8.0","text":"pch size ggcorrmat increased 14 (#579) increase visibility compared correlation value text. ggwithinstats gains point.args change geom_point. Minor change ggcorrmat legend title - content parentheses now shown outside .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-8-0","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.8.0","text":"ggcoefstats didn’t work statistic given model chi-squared. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-072","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.2","title":"ggstatsplot 0.7.2","text":"CRAN release: 2021-04-12","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.2","text":"reduce dependency load, ggExtra moves Imports Suggests. functions robust sense statistical analysis fails, return plots subtitles/captions. helps avoid difficult--diagnose edge case failures primary functions used grouped_ functions (e.g., #559). ggpiestats ggbarstats functions always behaved way, rest functions now also mimic behavior.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-7-2","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.7.2","text":"ggcoefstats labels contain degrees freedom available instead displaying Inf.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-071","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.1","title":"ggstatsplot 0.7.1","text":"CRAN release: 2021-03-11","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.1","text":"Based feedback users, argument title.prefix now removed. led redundant title prefixes across different facets plot. Given grouped_ functions require users set grouping.var, fair assume variable levels title correspond .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-7-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.7.1","text":"Adapts changes made statsExpressions 1.0.0. sample.size.label argument retired ggbetweenstats, ggwithinstats, ggbarstats. think ever good idea . users wish display sample sizes, can easily using scale_* functions ggplot2. ggpiestats ggbarstats, parametric proportion tests now turned type = \"bayes\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-070","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.0","title":"ggstatsplot 0.7.0","text":"CRAN release: 2021-02-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-7-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.7.0","text":"combine_plots completely revised rely patchwork, patchwork, combine list ggplot together. done leaner syntax. revision, vestigial twin combine_plots longer needed removed. break existing instances grouped_ functions, although lead changed graphical layouts. instance change lead breakage specified labels argument. , used plotgrid.args = list(labels = \"auto\"), now replace plotgrid.args = list(tag_level = \"keep\"). can also use annotation.args (e.g., annotation.args = list(tag_levels = \"\") customize labels (create labels pattern , b, c, etc.). Another instance breakage used combine_plots function provided individual plots ... instead list. avoid confusion among users, default trimming level functions now changed tr = 0.1 tr = 0.2 (WRS2 defaults ).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.0","text":"robust tests package based trimmed means, except correlation test. changed: robust correlation measure now Winsorized correlation, based trimming. Therefore, beta argument replaced tr argument. result minor changes correlation coefficient estimates. Using annotate instead geom_label significantly slowed gghistostats ggdotplotstats functions. fixed. Removes vestigial notch notchwidth arguments ggbetweenstats ggwithinstats. Bayesian expression templates now explicit type estimate displayed. gghistostats ggdotplotstats, centrality measure labels used attached vertical line, occluded underlying data. Now label instead shown top x-axis. Note means make changes resulting plot using ggplot2::scale_x_continuous function, label likely disappear. centrality.k argument retired favor k.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-7-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.7.0","text":"models supported ggcoefstats: crr, eglm, elm, varest. ggbetweenstats, ggwithinstats, gghistostats, ggdotplotstats gain argument centrality.type can used specify centrality parameter displayed. one can type = \"robust\" still show median centrality parameter choosing centrality.type = \"nonparametric\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-068","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.8","title":"ggstatsplot 0.6.8","text":"CRAN release: 2021-01-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-8","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.8","text":"gghistostats removes bar.measure argument. function now defaults showing count information x-axis proportion information duplicated x-axis. ggscatterstats removes method method.args arguments. longer possible use function visualize data model linear. also retires margins argument. ggbetweenstats ggwithinstats functions, arguments type mean.* replaced centrality.*. now functions decide central tendency measure show depending type argument (mean parametric, median non-parametric, trimmed mean robust, MAP estimator Bayes). Similarly, gghistostats ggdotplotstats functions also decide central tendency measure show depending type argument (mean parametric, median non-parametric, trimmed mean robust, MAP estimator Bayes). Therefore, centrality.parameter argument removed. want turn displaying centrality measure, set centrality.plotting = FALSE. gghistostats ggdotplotstats functions remove functionality display vertical line corresponding test.value. feature turned default prior releases. Accordingly, related arguments two functions removed. ggscatterstats defaults densigram marginal distribution visualization. ggbetweenstats ggwithinstats now display centrality tendency measure way label doesn’t occlude raw data points (#429). mean.ci argument retired ggbetweenstats ggwithinstats. Future ggstatsplot releases providing different centrality measures depending type argument guaranteed CIs available. , sake consistency, argument just going retired.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-8","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.8","text":"ggcorrmat uses pretty formatting display sample size information. ggcoefstats now also displays degrees freedom chi-squared tests. Expects minor changes effect sizes confidence intervals due changes statsExpressions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-8","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.8","text":"models supported ggcoefstats: fixest, ivFixed, ivprobit, riskRegression. ggcorrmat supports partial correlations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-066","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.6","title":"ggstatsplot 0.6.6","text":"CRAN release: 2020-12-03","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-6","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.6","text":"ggcoefstats longer supports exponentiate argument. specified, user adjust scales appropriately. ggcorrmat defaults changed significantly: matter good practice, p-values adjusted default multiple comparisons. default matrix upper type, full matrix, features many redundant comparisons self-correlations diagonally. Default text size legend increased 15 background grid removed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-6-6","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.6.6","text":"prior release, GitHub version BayesFactor wasn’t present, ggwithinstats just outright failed run ANOVA designs. fixed. Setting mean.path = FALSE ggwithinstats produced incorrect colors points (#470). bug introduced 0.6.5 now fixed. user set options(scipen = 999) session, p-value formatting ggpiestats ggcoefstats looked super-ugly (#478). fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-6","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.6","text":"Drops broomExtra dependencies. regression modeling-related analysis now relies easystats ecosystem. ggpiestats ggbarstats don’t support returning dataframes. See FAQ vignette get dataframes: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html#faq-1 ggpiestats ggbarstats supposed support returning Bayes Factor paired contingency table analysis, supported BayesFactor . ggcoefstats defaults displaying intercept term. Also, degrees freedom available t-statistic, displayed Inf, keeping easystats conventions. Instead showing significance p-values APA’s asterisks conventions, ggbarstats now instead shows actual p-values one-sample proportion tests.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-6","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.6","text":"models supported ggcoefstats: Glm.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-065","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.5","title":"ggstatsplot 0.6.5","text":"CRAN release: 2020-10-31","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-5","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.5","text":"ggpiestats ggbarstats longer vestigial arguments main condition, superseded x y, respectively.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.5","text":"consistency reduce confusion, Bayes Factor (irrespective whether subtitle caption) always favor null alternative (BF01). Retires centrality parameter tagging functionality ggscatterstats. Although default, turned , definitely created cluttered plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-061","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.1","title":"ggstatsplot 0.6.1","text":"CRAN release: 2020-10-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.1","text":"ggbetweenstats ggwithinstats functions now default pairwise.comparisons = TRUE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.1","text":"Plot borders now removed default theme. Small p-values (< 0.001) now displayed scientific notation.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.1","text":"pairwiseComparisons re-exports deprecated.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-060","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.0","title":"ggstatsplot 0.6.0","text":"CRAN release: 2020-09-13","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.0","text":"models supported ggcoefstats: BFBayesFactor, betamfx, crq, coxph.penal, geeglm, glht, glmm, lm_robust, lqm, lqmm, manova, maov, margins, negbinmfx, logitmfx, logitsf, margins, poissonmfx, betaor, negbinirr, logitor, metafor, metaplus, orm, poissonirr, semLm, semLme, vgam. ggpiestats gains label.repel argument cover contexts labels might overlap. Setting TRUE minimize overlap. ggbetweenstats ggwithinstats gain ggsignif.args argument make easy change aesthetics pairwise comparison geom. subtitle caption Bayes Factor tests now also provide information posterior estimates, relevant.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.0","text":"Removed unused intent_morality dataset. ggcoefstats retires caption.summary argument. , default, caption going contain much information can users can choose modify default caption using ggplot2 functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.0","text":"argument method ggcorrmat renamed matrix.method, since confusing whether method referred correlation method. ggpiestats ggbarstats, count labels longer include n = confusing since labels n = explanation n differed n proportion test. longer relies groupedstats package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-050","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.5.0","title":"ggstatsplot 0.5.0","text":"CRAN release: 2020-05-30","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-5-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.5.0","text":"pairwise.annotation argument ggbetweenstats ggwithinstats deprecated. done - Different fields different schema significance levels asterisks represent. p-value labels also contain information whether adjusted multiple comparisons. normality_message bartlett_message helper functions removed. model assumption checks don’t really fall purview package. excellent visualization tools model assumption checks (ggResidpanel, performance, DHARMa, olsrr, etc.), preferred unhelpful messages p-values functions printing. ’s worth, functions messages displayed (ggbetweenstats ggwithinstats) feature visualizations rich enough defaults sensible enough time one can either assess assumptions plots need worry .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-5-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.5.0","text":"ggcoefstats refactored reflect broomExtra::tidy_parameters now defaults parameters package instead broom. also loses following vestigial arguments: p.adjust.method coefficient.type. Reverts aligning title subtitle plot axes, since looked pretty ugly (esp., ggcoefstats) causing problems labels. factor.levels (ggpiestats) labels.legend (ggbarstats) deprecated. users like changes names factor levels, done outside ggstatsplot. non-parametric post hoc test -subjects design changed Dwass-Steel-Crichtlow-Fligner test Dunn test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-5-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.5.0","text":"models supported ggcoefstats: bayesGARCH, clm2, clmm2, mcmc.list, robmixglm.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-040","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.4.0","title":"ggstatsplot 0.4.0","text":"CRAN release: 2020-04-15","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.4.0","text":"ggcorrmat longer returns matrices correlation coefficients details. now returns either plot data frame can data frame can used create matrices. ggbarstats loses x.axis.orientation argument. argument supposed help avoid overlapping x-axis label, now ggplot2 3.3.0 better way handle : https://www.tidyverse.org/blog/2020/03/ggplot2-3-3-0/#rewrite--axis-code","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-4-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.4.0","text":"models supported ggcoefstats: bayesx, BBmm, brmultinom, lmerModLmerTest, lrm. Specifying output = \"proptest\" ggpiestats ggbarstats functions now return data frame containing results proportion test. ggbetweenstats ggwithinstats display pairwise comparisons even results.subtitle set FALSE. ggcorrmat supports computing Bayes Factors Pearson’s r correlation. ggbetweenstats ggwithinstats now support pairwise comparisons Bayes Factor test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.4.0","text":"changes related subtitle details, see changes made new version statsExpressions 4.0.0: https://CRAN.R-project.org/package=statsExpressions/news/news.html ggbetweenstats ggwithinstats longer print dataframes containing results pairwise comparisons tests cluttering user’s console. users now instead advised either extract data frame using ggplot2::ggplot_build() function use pairwiseComparisons::pairwise_comparisons() function used background ggstatsplot carry analysis. Due changes one downstream dependencies, ggstatsplot now expects minimum R version 3.6.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.4.0","text":"ggcorrmat now internally relies correlation correlation analyses. ggbarstats longer displays \"percent\" Y-axis label redundant information. Continuing argument cleanup began 0.3.0, ggcoefstats gains point.args argument instead individuals point.* arguments. subtitles explicit details test. reason stat.title argument relevant functions retired since argument supposed entering additional details test. Additionally, plot titles subtitles plots aligned plot. ggcorrmat legend, case missing values, shows mode - instead median - distribution sample pairs. following vestigial arguments retired: caption.default ggcorrmat k.caption.summary ggcoefstats","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-031","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.3.1","title":"ggstatsplot 0.3.1","text":"CRAN release: 2020-03-06 hotfix release correct failing tests minor breakages resulting new release ggplot2 3.3.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-3-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.3.1","text":"ggpiestats loses sample.size.label argument since information included goodness fit test results . setting proportion.test FALSE suppress information.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-030","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.3.0","title":"ggstatsplot 0.3.0","text":"CRAN release: 2020-03-01","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.3.0","text":"give users flexibility terms modifying aesthetic defaults geoms included ggstatsplot plots (plot typically multiple geoms), package now uses new form syntax. Previously, geom separate argument specify aesthetic (e.g., geom_point get arguments like point.size, point.color, etc.), resulted functions massive number arguments unsustainable long run. Instead, ggstatsplot functions now expect list arguments respective geom (e.g., geom_point point.args argument list arguments list(size = 5, color = \"darkgreen\", alpha = 0.8) can supplied). grouped_ functions refactored reduce number arguments. functions now internally use new combine_plots instead combine_plots. additional arguments primary functions can provided .... changes necessarily break existing code lead minor graphical changes (e.g., providing labels argument explicitly, ignored). functions lose return argument, supposed alternative enter output. just leading confusion user’s part. biggest user-visible impact going ggcorrmat longer backward-compatible. older scripts still work return argument anything except \"plot\", just ignored. ggcorrmat longer corr.method argument. consistent rest functions package, type statistics specified using type argument. Additional, gains new argument ggcorrplot.args, can used pass additional arguments underlying plotting function (ggcorrplot::ggcorrplot). gghistostats ggdotplotstats now use following arguments modify geoms corresponding lines labels: test.value.line.args, test.value.label.args, centrality.line.args, centrality.label.args. helps avoid specifying millions arguments. Removes vestigial ggplot_converter function. ggpiestats ggbarstats remove following vestigial arguments: facet.wrap.name, bias.correct, bar.outline.color. bar.proptest facet.proptest arguments difficult remember confusing replaced common proportion.test argument. Additionally, following arguments removed replaced label argument: slice.label, bar.label, data.label. plethora options headache remember. gghistostats loses following arguments: fill.gradient, low.color, high.color. made sense add color gradient plot Y-axis already displayed information bar represented. ggscatterstats loses following arguments: palette package. Since function requires two colors, didn’t make much sense use color palettes specify . can instead specified using xfill yfill. can always use paletteer::paletteer_d get vector color values provide values choosing xfill yfill. Removes sorting options ggbetweenstats ggwithinstats functions. something users can easily entering data functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.3.0","text":"ggcorrmat never supposed work Kendall’s correlation coefficient accidentally . longer case. ggstatsplot now logo, thanks Sarah! :) default theme_ggstatsplot changes slightly. biggest change title subtitle plots now aligned left plot. change also forced legend ggpiestats displayed right side plot rather bottom.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.3.0","text":"models supported ggcoefstats: BBreg, bcplm, bife, cglm, crch, DirichReg, LORgee, zcpglm, zeroinfl. Following functions now re-exported ipmisc: bartlett_message, normality_message. internal data wrangling functions now reside ipmisc.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-020","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.2.0","title":"ggstatsplot 0.2.0","text":"CRAN release: 2020-02-03","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.2.0","text":"manageable length function arguments, additional aesthetic specifications given geom can provided via dedicated *.args argument. example, aesthetic arguments geom_vline can provided via vline.args, geom_errorbarh via errorbar.args, etc. ggstatsplot continues conscious uncoupling started 0.1.0 release: following functions now moved statsExpressions package: subtitle_meta_parametric bf_meta_message follow logical nomenclature. reason, lm_effsize_ci function also longer exported lives groupedstats package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.2.0","text":"summary caption longer displays log-likelihood value tends available number regression model objects caption unnecessarily skipped. Supports robust Bayes Factors random-effects meta-analysis.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.2.0","text":"New dataset included: bugs_wide models supported ggcoefstats: cgam, cgamm, coxme, cpglm, cpglmm, complmrob, feis, flexsurvreg, glmx, hurdle, iv_robust, mixor, rqss, truncreg, vgam. Removed vestigial arguments ggcorrmat (e.g., exact, continuity, etc.) ggpiestats (bf.prior, simulate.p.value, B, etc.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-014","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.4","title":"ggstatsplot 0.1.4","text":"CRAN release: 2019-12-18","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-1-4","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.1.4","text":"ggbetweenstats ggwithinstats longer produce error variables pattern mean (#336).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.4","text":"pairwise_p reintroduced number users found useful call function ggstatsplot rather using pairwiseComparisons package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-1-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.1.4","text":"ggbetweenstats ggwithinstats use [ instead ( display confidence intervals. Additionally, μ\\mu denoted sample mean, confused population mean users. functions instead display μ̂\\hat{\\mu}. models supported ggcoefstats: bmlm, coeftest Adapts new syntax provided paletteer package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-013","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.3","title":"ggstatsplot 0.1.3","text":"CRAN release: 2019-11-21","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.3","text":"avoid excessive arguments function, arguments relevant ggrepel ggcoefstats function removed. users can instead provide arguments list stats.labels.args argument.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-1-3","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.1.3","text":"ggbetweenstats ggwithinstats longer produce incorrect label data frame already contains variable named n (#317) variables pattern mean (#322). ggbetweenstats ggwithinstats mean labels respect k argument (#331). MINOR ggcoefstats now uses parameters::p_value instead sjstats::p_value, requested maintainer package. might lead differences p-values lmer models. models supported ggcoefstats: blavaan, bracl, brglm2, glmc, lavaan, nlreg, slm, wbgee. ggcoefstats gains .significant argument display display stats labels significant effects. can helpful large number regression coefficients displayed single plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-012","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.2","title":"ggstatsplot 0.1.2","text":"CRAN release: 2019-09-17 MINOR Minor code refactoring gets rid following dependencies: magrittr, ellipsis, purrrlyr. MAJOR p-value label now specifies whether p-value displayed ggbetweenstats ggwithinstats pairwise comparisons adjusted multiple comparisons.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-011","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.1","title":"ggstatsplot 0.1.1","text":"CRAN release: 2019-08-30 ANNOUNCEMENTS ggstatsplot undergoing conscious uncoupling whereby statistical processing functions make stats subtitles moved new package called statsExpressions. new package act backend handles things statistical processing. affect end users ggstatsplot unless using helper functions. Additionally, multiple pairwise comparison tests moved independent package called pairwiseComparisons. uncoupling designed achieve two things: Make code base manageable size ggstatsplot, make package development bit easier. Make workflow customizable since now can prepare plots use statsExpressions display results plot rather relying ggstatsplot default plots heavily opinionated appealing everyone.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.1.1","text":"helper functions subtitle_* bf_* moved new statsExpressions package. consistent subtitle_ bf_ functions, subtitle_contingency_tab bf_contingency_tab now use arguments x y instead main condition.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.1","text":"Major refactoring reduce codesize rely fully rlang. confusion red point ggbetweenstats ggbetweenstats plots represents. Now label also contains μ\\mu highlight displayed mean value. consistent rest functions, ggpiestats ggbarstats now uses following aliases arguments: x main y condition. change backward-compatible pose problems scripts used main condition arguments functions. subtitle expressions now report details design. case -subjects design, n_obsn\\_{obs}, case repeated measures design, n_pairsn\\_{pairs}. pairwise.annotation now defaults \"p.value\" rather \"asterisk\" ggbetweenstats ggwithinstats (grouped_ variants) functions. done asterisk conventions consistent across various scientific disciplines.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.1.1","text":"New dataset included: bugs_long, repeated measures designs NAs present data. ggstatsplot now uses rcompanion compute Spearman’s rho Kendall’s W. Therefore, DescTools removed dependencies. ggcoefstats supports following objects: bglmerMod, blmerMod, lme, mclogit, mmclogit, tobit, wblm. ggcoefstats now respects conf.int. internally always defaulted conf.int = TRUE broom::tidy irrespective specified user. painfully confusing lot users exactly asterisks facet ggpiestats signified. instead now ggpiestats displays detailed results goodness fit (gof) test. change made ggbarstats space include details bar. Removed conf.method conf.type arguments ggcoefstats. Also, p.kr argument removed ggcoefstats begin rely parameters instead sjstats package compute p-values regression models.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0012","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.12","title":"ggstatsplot 0.0.12","text":"CRAN release: 2019-07-12","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-12","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.12","text":"Bayes Factor ggwithinstats caption, displayed default, incorrect. fixed. stemmed line code paired = TRUE, instead paired = FALSE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.12","text":"effect size measure Kruskal-Wallis test changed obscure H-based eta-squared statistic common interpretable epsilon-squared.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.12","text":"ggcoefstats defaults bf.message = TRUE consistent rest functions package. ggcoefstats supports following class objects: epi.2by2, negbin, emmGrid, lmrob, glmrob, glmmPQL, data.table. bf_ttest introduced general function. previously exported bf_one_sample_ttest bf_two_sample_ttest become aliases. bf_meta_message syntax changes adapt updates made metaBMA package (thanks #259).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.12","text":"vestigial arguments axis.text.x.margin.t, axis.text.x.margin.r, axis.text.x.margin.b, axis.text.x.margin.l ggcorrmat removed. margins can adjusted using ggplot2::margin(). gghistostats longer allows data argument NULL. make function’s syntax consistent rest functions package (none allow data NULL). also removes confusion arose users data couldn’t NULL grouped_ cousin (grouped_gghistostats). outlier_df function longer exported since always meant internal function accidently exported initial release retained backward compatibility.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0011","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.11","title":"ggstatsplot 0.0.11","text":"CRAN release: 2019-06-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.11","text":"Instead two separate functions dealt repeated measures (subtitle_friedman_nonparametric) -subjects (subtitle_kw_nonparametric), single function subtitle_anova_nonparametric handles designs paired argument determining test run. functions supported Bayes Factor analysis (type = \"bf\") return BF value scale used. Previously, mix parametric statistics BF, confusing often times misleading since two types analyses relied different tests. default bf.message changed FALSE TRUE. make Bayes Factor analysis visible user.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.11","text":"ggscatterstats returns plot (without statistical details) specified model linear (.e., either method argument \"lm\" formula y ~ x).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-11","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.11","text":"New functions ggwithinstats (grouped_ variant) introduced counterpart ggbetweenstats handle repeated measures designs. repeated measures ANOVA, subtitle_anova_nonparametric now returns confidence intervals Kendall’s W. functions get return argument can used return either \"plot\", \"subtitle\", \"caption\". makes unnecessary remember subtitle function used . result, next release, subtitle making functions exported encouraged used either developers users. subtitle_anova_robust subtitle_anova_parametric gain new argument paired support repeated measures designs. ggcoefstats can support following new model objects: drc, mlm. ggcoefstats gains bf.message argument display caption containing results Bayesian random-effects meta-analysis. therefore gains new dependency: metaBMA. ggpiestats ggcatstats now display Cramer’s V effect size one-sample proportion tests. functions gain stat.title argument (NULL default) can used prefix subtitle string interest. possibly useful specifying details statistical test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.11","text":"pairwise_p() function longer outputs conf.low conf.high columns parametric post hoc tests run. values accurate p-value adjustment carried . Instead using internal function cor_test_ci, ggscatterstats instead used SpearmanRho function DescTools package. done reduce number custom internal functions used compute CIs various effect sizes. ggstatsplot therefore gains DescTools dependency. sampling.plan argument default ggbarstats function changed \"indepMulti\" \"jointMulti\" consistent sister function ggpiestats.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0010","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.10","title":"ggstatsplot 0.0.10","text":"CRAN release: 2019-03-17","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-10","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.10","text":"ggcoefstats can support following new model objects: rjags. New VR_dilemma dataset toying around within-subjects design. subtitle_t_onesample supports Cohen’s d Hedge’s g effect sizes also produces confidence intervals. Additionally, non-central variants effect sizes also supported. Thus, gghistostats grouped_ variant gets two new arguments: effsize.type, effsize.noncentral. ggpiestats used display odds ratio effect size paired designs (McNemar test). working analysis 2 x 2 contingency table. now instead displays Cohen’s G effect size, generalizes kind design.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-10","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.10","text":"internal function outlier_df add column specifying outlier status given data point now exported. ggstatsplot previously relied internal function chisq_v_ci compute confidence intervals Cramer’s V using bootstrapping pretty slow. now instead relies rcompanion package compute confidence intervals V. ggstatsplot, therefore, gains new dependency. subtitle_mann_nonparametric subtitle_t_onesample now computes effect size r confidence intervals Z/NZ/\\sqrt{N} (help rcompanion package), instead using Spearman correlation.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-009","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.9","title":"ggstatsplot 0.0.9","text":"CRAN release: 2019-02-18","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.9","text":"subtitle_t_onesample longer data optional argument. done consistent subtitle helper functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-9","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.9","text":"New function ggbarstats (grouped_ variant) introduced making bar charts (thanks #78). ggcoefstats also displays caption model summary meta-analysis required. gghistostats grouped_ variant new argument normal.curve superpose normal distribution curve top histogram (#138). ggcoefstats can support following new regression model objects: brmsfit, gam, Gam, gamlss, mcmc, mjoint, stanreg. New function convert plots gg/ggplot class ggplot class objects. Instead using effsize compute Cohen’s d Hedge’s g, ggstatsplot now relies new (#159) internal function effect_t_parametric compute . removes effsize dependencies. consistent functions package, ggbarstats ggpiestats gain results.subtitle can set FALSE statistical analysis required, case subtitle argument can used provide alternative subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.9","text":"ggbetweenstats now defaults using noncentral-t distribution computing Cohen’s d Hedge’s g. get variants central-t distribution, use effsize.noncentral = FALSE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.9","text":"grouped_ functions argument title.prefix defaulted \"Group\". now instead defaults NULL, case prefix variable name grouping.var argument. accommodate non-parametric tests, subtitle_template function can now work parameter = NULL. ggbetweenstats, details contained subtitle non-parametric test modified. now uses Spearman’s rho-based effect size estimates. removes coin dependencies. ggbetweenstats grouped_ variant gain new argument axes.range.restrict (defaults FALSE). restricts y-axes limits minimum maximum y variable. functions default past versions, created issues additional ggplot components using ggplot.component argument. bayes factor related subtitle captions replace prior.width r_{Cauchy}. ggcoefstats passes dots (...) augment method broom.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-9","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.9","text":"helper function bf_extractor longer provides option extract information posterior distribution details incorrect. posterior = TRUE details used anywhere package nothing results changes. ggcorrmat didn’t output pair names output == \"ci\" used. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-008","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.8","title":"ggstatsplot 0.0.8","text":"CRAN release: 2019-01-07","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-8","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.8","text":"ggcoefstats gains meta.analytic.effect can used carry meta-analysis regression estimates. especially useful data frame regression estimates standard error available prior analyses. subtitle prepared new function subtitle_meta_ggcoefstats also exported. ggbetweenstats, ggscatterstats, gghistostats, ggdotplotstats (grouped_ variants) gain new ggplot.component argument. argument primarily helpful change individual plots grouped_ plot. ggcoefstats can support following new regression model objects: polr, survreg, cch, Arima, biglm, glmmTMB, coxph, ridgelm, aareg, plm, nlrq, ivreg, ergm, btergm, garch, gmm, lmodel2, svyolr, confusionMatrix, multinom, nlmerMod, svyglm, MCMCglmm, lm.beta, speedlm, fitdistr, mle2, orcutt, glmmadmb.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-8","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.8","text":"ggcoefstats didn’t work statistic argument set NULL. expected behavior. fixed. Now, statistic specified, dot--whiskers shown without labels. subtitle_t_parametric producing incorrect sample size information paired = TRUE data contained NAs. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-8","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.8","text":"ggscatterstats grouped_ variant accept character bare exressions input arguments label.var labe.expression (#110). consistent rest functions package, Pearson’s r, Spearman’s rho, robust percentage bend correlations also display information statistic associated tests. ggscatterstats, default, showed jittered data points (relied position_jitter defaults). visually inaccurate , therefore, ggscatterstats now displays points without jitter. user can introduce jitter wish using point.width.jitter point.height.jitter arguments. similar reasons, ggbetweenstats grouped_ variant, point.jitter.height default changed 0.1 0 (vertical jitter, .e.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-8","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.8","text":"Confidence interval Kendall’s W now computed using stats::kruskal.test. result, PMCMRplus removed dependencies. ggcoefstats gains caption argument. caption.summary set TRUE, specified caption added top caption.summary.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-007","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.7","title":"ggstatsplot 0.0.7","text":"CRAN release: 2018-12-08","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-7","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.7","text":"ggcoefstats showing wrong confidence intervals merMod class objects due bug broom.mixed package (https://github.com/bbolker/broom.mixed/issues/30#issuecomment-428385005). fixed broom.mixed ggcoefstats longer issues. specify_decimal_p modified produced incorrect results k < 3 p.value = TRUE (e.g., 0.002 printed < 0.001). ggpiestats produced incorrect results levels factor filtered prior using function. now drops unused levels produces correct results. gghistostats wasn’t filtering NAs properly. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-7","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.7","text":"New function ggdotplotstats creating dot plot/chart labelled numeric data. primary functions gain conf.level argument control confidence level effect size measures. per APA guidelines, results show results two decimal places. , default value k argument functions changed 3 2. helper functions ggbetweenstats subtitles renamed remove _ggbetween_ names becoming confusing user. functions work - within-subjects designs, _ggbetween_ names made users suspect use functions within-subjects designs. ggstatsplot now depends R 3.5.0. dependencies require 3.5.0 work (e.g., broom.mixed). theme_ functions now exported (theme_pie(), theme_corrmat()). ggbetweenstats now supports multiple pairwise comparison tests (parametric, nonparametric, robust variants). gains new dependency ggsignif. ggbetweenstats now supports eta-squared omega-squared effect sizes anova models. function gains new argument partial. Following functions now reexported groupedstats package avoid repeating code two packages: specify_decimal_p, signif_column, lm_effsize_ci, set_cwd. Therefore, groupedstats now added dependency. gghistostats can now show counts proportions information plot bar.measure argument set \"mix\". ggcoefstats works tidy dataframes. helper function untable deprecated light tidyr::uncount, exactly untable . author wasn’t aware function untable written. vignettes removed CRAN reduce size package. now available package website: https://indrajeetpatil.github.io/ggstatsplot/articles/. subtitle_t_robust function can now handle dependent samples gains paired argument. number tidyverse operators now reexported ggstatsplot: %>%, %<>%, %$%.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-7","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.7","text":"ggscatterstats, ggpiestats, grouped_ variant support bayes factor tests gain new arguments relevant test. Effect size confidence intervals now available Kruskal-Wallis test. Minor stylistic changes symbols partial-eta-/omega-squared displayed subtitles. ggbetweenstats supports bayes factor tests anova designs. ggpiestats (grouped_ version) gain slice.label argument decides information needs displayed label slices pie chart: \"percentage\" (default thus far), \"counts\", \"\". ggcorrmat can work cor.vars = NULL. case, numeric variables provided data frame used computing correlation matrix. Given constant changes default behavior functions, lifecycle badge changed stable maturing. number colors needed function exceeds number colors contained given palette, informative message displayed user (new internal function palette_message()). Several users requested easier way turn subtitles results tests (already implemented ggscatterstats gghistostats argument results.subtitle), ggbetweenstats also gains two new arguments : results.subtitle subtitle. New dataset added: iris_long. tests added code coverage now jumped 75%. avoid code repetition, now function produces generic message time confidence intervals effect size estimate computed using bootstrapping.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-006","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.6","title":"ggstatsplot 0.0.6","text":"CRAN release: 2018-09-30","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.6","text":"package now exports functions used create text expressions results. makes easy people use results plots location want (just subtitle, current default ggstatsplot). ggcorrmat gains p.adjust.method argument allows p-values correlations corrected multiple comparisons. ggscatterstats gains label.var label.expression arguments attach labels points. gghistostats now defaults showing (redundant) color gradient (fill.gradient = FALSE) shows \"count\" \"proportion\" data. also gains new argument bar.fill can used fill bars uniform color. ggbetweenstats, ggcoefstats, ggcorrmat, ggscatterstats, ggpiestats now support palettes contained paletteer package. helps avoid situations people large number groups (> 12) enough colors RColorBrewer palettes. ggbetweenstats gains bf.message argument display bayes factors favor null (currently works parametric t-test). gghistostats function longer line.labeller.y argument; position automatically determined now.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.6","text":"legend.title.margin function deprecated since ggplot2 3.0.0 improved margin issues previous versions. functions wrapped around function now lose relevant arguments (legend.title.margin, t.margin, b.margin). argument ggstatsplot.theme changed ggstatsplot.layer ggcorrmat function consistent across functions. consistency, conf.level conf.type arguments ggbetweenstats deprecated. function package allowed changing confidence interval type effect size estimation. arguments relevant robust tests anyway. ggocorrmat argument type changed matrix.type functions type argument specifies type test, function specified display visualization matrix. make syntax consistent across functions. ggscatterstats gains new arguments specify aesthetics geom point (point.color, point.size, point.alpha). consistent naming schema, width.jitter height.jitter arguments renamed point.width.jitter point.height.jitter, resp.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.6","text":"gghistostats: compatible JASP, natural logarithm Bayes Factors displayed, base 10 logarithm. ggscatterstats gains method formula arguments modify smoothing functions. ggcorrmat can now show robust correlation coefficients matrix plot. gghistostats, binwidth value, specified, computed (max-min)/sqrt(n). basically get rid warnings ggplot2 produces. Thanks Chuck Powell’s PR (#43). ggcoefstats gains new argument partial can display eta-squared omega-squared effect sizes anovas, addition prior partial variants effect sizes. ggpiestats gains digits.perc argument show desired number decimal places percentage labels.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-6","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.6","text":"grouped_ggpiestats wasn’t working main variable provided counts data. Fixed .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-005","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.5","title":"ggstatsplot 0.0.5","text":"CRAN release: 2018-08-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.5","text":"sake consistency, theme_mprl now called theme_ggstatsplot. theme_mprl function still around deprecated, feel free use either since identical. ggcoefstats longer arguments effects ran_params fixed effects shown mixed-effects models. ggpiestats can now handle within-subjects designs (McNemar test results displayed).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-5","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.5","text":"ggbetweenstats producing wrong axes labels sample.size.label set TRUE user reordered factor levels using function. new version fixes . ggcoefstats wasn’t producing partial omega-squared aovlist objects. Fixed new version sjstats.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.5","text":"Removed trailing comma robust correlation analyses. gghistostats new argument remove color fill gradient. ggbetweenstats takes new argument mean.ci show confidence intervals mean values. lmer models, p-values now computed using sjstats::p_value. removes lmerTest package dependencies. sjstats longer suggests apaTables package compute confidence intervals partial eta- omega-squared. Therefore, apaTables MBESS removed dependencies. ggscatterstats supports densigram development version ggExtra. additionally gains extra arguments change aesthetics marginals (alpha, size, etc.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-004","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.4","title":"ggstatsplot 0.0.4","text":"CRAN release: 2018-07-05","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.4","text":"New function: ggcoefstats displaying model coefficients. functions now ggtheme argument can used change default theme, now changed theme_grey() theme_bw(). robust correlation longer MASS::rlm, percentage bend correlation, implemented WRS2::pbcor. done consistent across different functions. ggcorrmat also uses percentage bend correlation robust correlation measure. also means ggstatsplot longer imports MASS sfsmisc. data argument longer NULL functions, except gghistostats. words, user must provide data frame variables formulas selected. subtitles containing results now also show sample size information (n). adjust inflated length subtitle, default subtitle text size changed 12 11.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.4","text":"Switched back Shapiro-Wilk test normality remove nortest imports. ggbetweenstats ggpiestats now display sample sizes level groping factor default. behavior can turned setting sample.size.label FALSE. Three new datasets added: Titanic_full, movies_wide, movies_long. Added confidence interval effect size robust ANOVA. 95% CI Cramer’V computed using boot::boot. Therefore, package longer imports DescTools. consistent across correlations covered, correlations now show estimates correlation coefficients, confidence intervals estimate, p-values. Therefore, t-values regression coefficients longer displayed Pearson’s r. legend.title.margin arguments gghistostats ggcorrmat now default FALSE, since ggplot2 3.0.0 better legend title margins. ggpiestats now sorts summary dataframes percentages levels main variable. done legends across different levels grouping variable grouped_ggpiestats. remove cluttered display results subtitle, ggpiestats longer shows titles tests run (“Proportion test” “Chi-Square test”). pie charts, obvious user reader test run. gghistostats also allows running robust version one-sample test now (One-sample percentile bootstrap).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-003","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.3","title":"ggstatsplot 0.0.3","text":"CRAN release: 2018-05-22","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-3","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.3","text":"ggbetweenstats function can now show notched box plots. Two new arguments notch notchwidth control behavior. defaults still standard box plots. Removed warnings appearing outlier.label argument character type. default color palette used plots colorblind friendly. gghistostats supports proportion density value measure bar heights show proportions density. New argument bar.measure controls behavior. grouped_ variants functions ggcorrmat, ggscatterstats, ggbetweenstats, ggpiestats introduced create multiple plots different levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.3","text":"internally consistent, functions ggstatsplot use spelling color, rather colour functions, color others. Removed redundant argument binwidth.adjust gghistostats function. argument relevant first avatar function, longer playing role. internally consistent, argument lab_col lab_size ggcorrmat changed lab.col lab.size, respectively.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-3","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.3","text":"Added new argument ggstatsplot.theme function control ggstatsplot::theme_mprl overlaid top selected ggtheme (ggplot2 theme, .e.). Two new arguments added gghistostats allow user change colorbar gradient. Defaults colorblind friendly. gghistostats ggcorrmat new argument legend.title.margin control margin adjustment title colorbar. vertical lines denoting test values centrality parameters can tagged text labels new argument line.labeller gghistostats function.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-3","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.3","text":"centrality.para argument ggscatterstats working properly. Choosing \"median\" didn’t show median, mean. fixed now.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-002","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.2","title":"ggstatsplot 0.0.2","text":"CRAN release: 2018-04-28","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-2","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.2","text":"Bayesian test added gghistostats two new arguments also display vertical line test.value argument. Vignette added gghistostats. Added new function grouped_gghistostats facilitate applying gghistostats multiple levels grouping factor. ggbetweenstats new argument outlier.coef adjust threshold used detect outliers. Removed bug function outlier.label argument factor/character type.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.2","text":"Functions signif_column grouped_proptest now deprecated. exported first release mistake. Function gghistostats longer displays density count since density information redundant. density.plot argument also deprecated. ggscatterstats argument intercept now changed centrality.para. due possible confusion interpretation lines; show central tendency measures intercept linear model. Thus change. default effsize.type = \"biased\" effect size ggbetweenstats case ANOVA partial omega-squared, omega-squared. Additionally, partial eta- omega-squared computed using bootstrapping (default) 100 bootstrap samples.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-2","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.2","text":"examples added README document. 95% confidence intervals Spearman’s rho now computed using broom package. RVAideMemoire package thus removed dependencies. 95% confidence intervals partial eta- omega-squared ggbetweenstats function now computed using sjstats package, allows bootstrapping. apaTables userfriendlyscience packages thus removed dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-001","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.1","title":"ggstatsplot 0.0.1","text":"CRAN release: 2018-04-03 First release package.","code":""}] +[{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement patilindrajeet.science@gmail.com. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired [Mozilla’s code conduct enforcement ladder][https://github.com/mozilla/inclusion]. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to ggstatsplot","title":"Contributing to ggstatsplot","text":"outlines propose change ggstatsplot. detailed info contributing , tidyverse packages, please see development contributing guide.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to ggstatsplot","text":"Small typos grammatical errors documentation may edited directly using GitHub web interface, long changes made source file. YES: edit roxygen comment .R file R/. : edit .Rd file man/.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"prerequisites","dir":"","previous_headings":"","what":"Prerequisites","title":"Contributing to ggstatsplot","text":"make substantial pull request, always file issue make sure someone team agrees ’s problem. ’ve found bug, create associated issue illustrate bug minimal reprex.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"","what":"Pull request process","title":"Contributing to ggstatsplot","text":"recommend create Git branch pull request (PR). Look Travis AppVeyor build status making changes. README contain badges continuous integration services used package. New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat. Contributions test cases included easier accept. user-facing changes, add bullet top NEWS.md current development version header describing changes made followed GitHub username, links relevant issue(s)/PR(s).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to ggstatsplot","text":"Please note ggstatsplot project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/CONTRIBUTING.html","id":"see-tidyverse-development-contributing-guide","dir":"","previous_headings":"","what":"See tidyverse development contributing guide","title":"Contributing to ggstatsplot","text":"details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"GNU General Public License","title":"GNU General Public License","text":"Version 3, 29 June 2007Copyright © 2007 Free Software Foundation, Inc.  Everyone permitted copy distribute verbatim copies license document, changing allowed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"preamble","dir":"","previous_headings":"","what":"Preamble","title":"GNU General Public License","text":"GNU General Public License free, copyleft license software kinds works. licenses software practical works designed take away freedom share change works. contrast, GNU General Public License intended guarantee freedom share change versions program–make sure remains free software users. , Free Software Foundation, use GNU General Public License software; applies also work released way authors. can apply programs, . speak free software, referring freedom, price. General Public Licenses designed make sure freedom distribute copies free software (charge wish), receive source code can get want , can change software use pieces new free programs, know can things. protect rights, need prevent others denying rights asking surrender rights. Therefore, certain responsibilities distribute copies software, modify : responsibilities respect freedom others. example, distribute copies program, whether gratis fee, must pass recipients freedoms received. must make sure , , receive can get source code. must show terms know rights. Developers use GNU GPL protect rights two steps: (1) assert copyright software, (2) offer License giving legal permission copy, distribute /modify . developers’ authors’ protection, GPL clearly explains warranty free software. users’ authors’ sake, GPL requires modified versions marked changed, problems attributed erroneously authors previous versions. devices designed deny users access install run modified versions software inside , although manufacturer can . fundamentally incompatible aim protecting users’ freedom change software. systematic pattern abuse occurs area products individuals use, precisely unacceptable. Therefore, designed version GPL prohibit practice products. problems arise substantially domains, stand ready extend provision domains future versions GPL, needed protect freedom users. Finally, every program threatened constantly software patents. States allow patents restrict development use software general-purpose computers, , wish avoid special danger patents applied free program make effectively proprietary. prevent , GPL assures patents used render program non-free. precise terms conditions copying, distribution modification follow.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_0-definitions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"0. Definitions","title":"GNU General Public License","text":"License refers version 3 GNU General Public License. Copyright also means copyright-like laws apply kinds works, semiconductor masks. Program refers copyrightable work licensed License. licensee addressed . Licensees recipients may individuals organizations. modify work means copy adapt part work fashion requiring copyright permission, making exact copy. resulting work called modified version earlier work work based  earlier work. covered work means either unmodified Program work based Program. propagate work means anything , without permission, make directly secondarily liable infringement applicable copyright law, except executing computer modifying private copy. Propagation includes copying, distribution (without modification), making available public, countries activities well. convey work means kind propagation enables parties make receive copies. Mere interaction user computer network, transfer copy, conveying. interactive user interface displays Appropriate Legal Notices extent includes convenient prominently visible feature (1) displays appropriate copyright notice, (2) tells user warranty work (except extent warranties provided), licensees may convey work License, view copy License. interface presents list user commands options, menu, prominent item list meets criterion.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_1-source-code","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"1. Source Code","title":"GNU General Public License","text":"source code work means preferred form work making modifications . Object code means non-source form work. Standard Interface means interface either official standard defined recognized standards body, , case interfaces specified particular programming language, one widely used among developers working language. System Libraries executable work include anything, work whole, () included normal form packaging Major Component, part Major Component, (b) serves enable use work Major Component, implement Standard Interface implementation available public source code form. Major Component, context, means major essential component (kernel, window system, ) specific operating system () executable work runs, compiler used produce work, object code interpreter used run . Corresponding Source work object code form means source code needed generate, install, (executable work) run object code modify work, including scripts control activities. However, include work’s System Libraries, general-purpose tools generally available free programs used unmodified performing activities part work. example, Corresponding Source includes interface definition files associated source files work, source code shared libraries dynamically linked subprograms work specifically designed require, intimate data communication control flow subprograms parts work. Corresponding Source need include anything users can regenerate automatically parts Corresponding Source. Corresponding Source work source code form work.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_2-basic-permissions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"2. Basic Permissions","title":"GNU General Public License","text":"rights granted License granted term copyright Program, irrevocable provided stated conditions met. License explicitly affirms unlimited permission run unmodified Program. output running covered work covered License output, given content, constitutes covered work. License acknowledges rights fair use equivalent, provided copyright law. may make, run propagate covered works convey, without conditions long license otherwise remains force. may convey covered works others sole purpose make modifications exclusively , provide facilities running works, provided comply terms License conveying material control copyright. thus making running covered works must exclusively behalf, direction control, terms prohibit making copies copyrighted material outside relationship . Conveying circumstances permitted solely conditions stated . Sublicensing allowed; section 10 makes unnecessary.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_3-protecting-users-legal-rights-from-anti-circumvention-law","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"3. Protecting Users’ Legal Rights From Anti-Circumvention Law","title":"GNU General Public License","text":"covered work shall deemed part effective technological measure applicable law fulfilling obligations article 11 WIPO copyright treaty adopted 20 December 1996, similar laws prohibiting restricting circumvention measures. convey covered work, waive legal power forbid circumvention technological measures extent circumvention effected exercising rights License respect covered work, disclaim intention limit operation modification work means enforcing, work’s users, third parties’ legal rights forbid circumvention technological measures.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_4-conveying-verbatim-copies","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"4. Conveying Verbatim Copies","title":"GNU General Public License","text":"may convey verbatim copies Program’s source code receive , medium, provided conspicuously appropriately publish copy appropriate copyright notice; keep intact notices stating License non-permissive terms added accord section 7 apply code; keep intact notices absence warranty; give recipients copy License along Program. may charge price price copy convey, may offer support warranty protection fee.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_5-conveying-modified-source-versions","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"5. Conveying Modified Source Versions","title":"GNU General Public License","text":"may convey work based Program, modifications produce Program, form source code terms section 4, provided also meet conditions: ) work must carry prominent notices stating modified , giving relevant date. b) work must carry prominent notices stating released License conditions added section 7. requirement modifies requirement section 4 keep intact notices. c) must license entire work, whole, License anyone comes possession copy. License therefore apply, along applicable section 7 additional terms, whole work, parts, regardless packaged. License gives permission license work way, invalidate permission separately received . d) work interactive user interfaces, must display Appropriate Legal Notices; however, Program interactive interfaces display Appropriate Legal Notices, work need make . compilation covered work separate independent works, nature extensions covered work, combined form larger program, volume storage distribution medium, called aggregate compilation resulting copyright used limit access legal rights compilation’s users beyond individual works permit. Inclusion covered work aggregate cause License apply parts aggregate.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_6-conveying-non-source-forms","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"6. Conveying Non-Source Forms","title":"GNU General Public License","text":"may convey covered work object code form terms sections 4 5, provided also convey machine-readable Corresponding Source terms License, one ways: ) Convey object code , embodied , physical product (including physical distribution medium), accompanied Corresponding Source fixed durable physical medium customarily used software interchange. b) Convey object code , embodied , physical product (including physical distribution medium), accompanied written offer, valid least three years valid long offer spare parts customer support product model, give anyone possesses object code either (1) copy Corresponding Source software product covered License, durable physical medium customarily used software interchange, price reasonable cost physically performing conveying source, (2) access copy Corresponding Source network server charge. c) Convey individual copies object code copy written offer provide Corresponding Source. alternative allowed occasionally noncommercially, received object code offer, accord subsection 6b. d) Convey object code offering access designated place (gratis charge), offer equivalent access Corresponding Source way place charge. need require recipients copy Corresponding Source along object code. place copy object code network server, Corresponding Source may different server (operated third party) supports equivalent copying facilities, provided maintain clear directions next object code saying find Corresponding Source. Regardless server hosts Corresponding Source, remain obligated ensure available long needed satisfy requirements. e) Convey object code using peer--peer transmission, provided inform peers object code Corresponding Source work offered general public charge subsection 6d. separable portion object code, whose source code excluded Corresponding Source System Library, need included conveying object code work. User Product either (1) consumer product, means tangible personal property normally used personal, family, household purposes, (2) anything designed sold incorporation dwelling. determining whether product consumer product, doubtful cases shall resolved favor coverage. particular product received particular user, normally used refers typical common use class product, regardless status particular user way particular user actually uses, expects expected use, product. product consumer product regardless whether product substantial commercial, industrial non-consumer uses, unless uses represent significant mode use product. Installation Information User Product means methods, procedures, authorization keys, information required install execute modified versions covered work User Product modified version Corresponding Source. information must suffice ensure continued functioning modified object code case prevented interfered solely modification made. convey object code work section , , specifically use , User Product, conveying occurs part transaction right possession use User Product transferred recipient perpetuity fixed term (regardless transaction characterized), Corresponding Source conveyed section must accompanied Installation Information. requirement apply neither third party retains ability install modified object code User Product (example, work installed ROM). requirement provide Installation Information include requirement continue provide support service, warranty, updates work modified installed recipient, User Product modified installed. Access network may denied modification materially adversely affects operation network violates rules protocols communication across network. Corresponding Source conveyed, Installation Information provided, accord section must format publicly documented (implementation available public source code form), must require special password key unpacking, reading copying.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_7-additional-terms","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"7. Additional Terms","title":"GNU General Public License","text":"Additional permissions terms supplement terms License making exceptions one conditions. Additional permissions applicable entire Program shall treated though included License, extent valid applicable law. additional permissions apply part Program, part may used separately permissions, entire Program remains governed License without regard additional permissions. convey copy covered work, may option remove additional permissions copy, part . (Additional permissions may written require removal certain cases modify work.) may place additional permissions material, added covered work, can give appropriate copyright permission. Notwithstanding provision License, material add covered work, may (authorized copyright holders material) supplement terms License terms: ) Disclaiming warranty limiting liability differently terms sections 15 16 License; b) Requiring preservation specified reasonable legal notices author attributions material Appropriate Legal Notices displayed works containing ; c) Prohibiting misrepresentation origin material, requiring modified versions material marked reasonable ways different original version; d) Limiting use publicity purposes names licensors authors material; e) Declining grant rights trademark law use trade names, trademarks, service marks; f) Requiring indemnification licensors authors material anyone conveys material (modified versions ) contractual assumptions liability recipient, liability contractual assumptions directly impose licensors authors. non-permissive additional terms considered restrictions within meaning section 10. Program received , part , contains notice stating governed License along term restriction, may remove term. license document contains restriction permits relicensing conveying License, may add covered work material governed terms license document, provided restriction survive relicensing conveying. add terms covered work accord section, must place, relevant source files, statement additional terms apply files, notice indicating find applicable terms. Additional terms, permissive non-permissive, may stated form separately written license, stated exceptions; requirements apply either way.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_8-termination","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"8. Termination","title":"GNU General Public License","text":"may propagate modify covered work except expressly provided License. attempt otherwise propagate modify void, automatically terminate rights License (including patent licenses granted third paragraph section 11). However, cease violation License, license particular copyright holder reinstated () provisionally, unless copyright holder explicitly finally terminates license, (b) permanently, copyright holder fails notify violation reasonable means prior 60 days cessation. Moreover, license particular copyright holder reinstated permanently copyright holder notifies violation reasonable means, first time received notice violation License (work) copyright holder, cure violation prior 30 days receipt notice. Termination rights section terminate licenses parties received copies rights License. rights terminated permanently reinstated, qualify receive new licenses material section 10.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_9-acceptance-not-required-for-having-copies","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"9. Acceptance Not Required for Having Copies","title":"GNU General Public License","text":"required accept License order receive run copy Program. Ancillary propagation covered work occurring solely consequence using peer--peer transmission receive copy likewise require acceptance. However, nothing License grants permission propagate modify covered work. actions infringe copyright accept License. Therefore, modifying propagating covered work, indicate acceptance License .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_10-automatic-licensing-of-downstream-recipients","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"10. Automatic Licensing of Downstream Recipients","title":"GNU General Public License","text":"time convey covered work, recipient automatically receives license original licensors, run, modify propagate work, subject License. responsible enforcing compliance third parties License. entity transaction transaction transferring control organization, substantially assets one, subdividing organization, merging organizations. propagation covered work results entity transaction, party transaction receives copy work also receives whatever licenses work party’s predecessor interest give previous paragraph, plus right possession Corresponding Source work predecessor interest, predecessor can get reasonable efforts. may impose restrictions exercise rights granted affirmed License. example, may impose license fee, royalty, charge exercise rights granted License, may initiate litigation (including cross-claim counterclaim lawsuit) alleging patent claim infringed making, using, selling, offering sale, importing Program portion .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_11-patents","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"11. Patents","title":"GNU General Public License","text":"contributor copyright holder authorizes use License Program work Program based. work thus licensed called contributor’s contributor version. contributor’s essential patent claims patent claims owned controlled contributor, whether already acquired hereafter acquired, infringed manner, permitted License, making, using, selling contributor version, include claims infringed consequence modification contributor version. purposes definition, control includes right grant patent sublicenses manner consistent requirements License. contributor grants non-exclusive, worldwide, royalty-free patent license contributor’s essential patent claims, make, use, sell, offer sale, import otherwise run, modify propagate contents contributor version. following three paragraphs, patent license express agreement commitment, however denominated, enforce patent (express permission practice patent covenant sue patent infringement). grant patent license party means make agreement commitment enforce patent party. convey covered work, knowingly relying patent license, Corresponding Source work available anyone copy, free charge terms License, publicly available network server readily accessible means, must either (1) cause Corresponding Source available, (2) arrange deprive benefit patent license particular work, (3) arrange, manner consistent requirements License, extend patent license downstream recipients. Knowingly relying means actual knowledge , patent license, conveying covered work country, recipient’s use covered work country, infringe one identifiable patents country reason believe valid. , pursuant connection single transaction arrangement, convey, propagate procuring conveyance , covered work, grant patent license parties receiving covered work authorizing use, propagate, modify convey specific copy covered work, patent license grant automatically extended recipients covered work works based . patent license discriminatory include within scope coverage, prohibits exercise , conditioned non-exercise one rights specifically granted License. may convey covered work party arrangement third party business distributing software, make payment third party based extent activity conveying work, third party grants, parties receive covered work , discriminatory patent license () connection copies covered work conveyed (copies made copies), (b) primarily connection specific products compilations contain covered work, unless entered arrangement, patent license granted, prior 28 March 2007. Nothing License shall construed excluding limiting implied license defenses infringement may otherwise available applicable patent law.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_12-no-surrender-of-others-freedom","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"12. No Surrender of Others’ Freedom","title":"GNU General Public License","text":"conditions imposed (whether court order, agreement otherwise) contradict conditions License, excuse conditions License. convey covered work satisfy simultaneously obligations License pertinent obligations, consequence may convey . example, agree terms obligate collect royalty conveying convey Program, way satisfy terms License refrain entirely conveying Program.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_13-use-with-the-gnu-affero-general-public-license","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"13. Use with the GNU Affero General Public License","title":"GNU General Public License","text":"Notwithstanding provision License, permission link combine covered work work licensed version 3 GNU Affero General Public License single combined work, convey resulting work. terms License continue apply part covered work, special requirements GNU Affero General Public License, section 13, concerning interaction network apply combination .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_14-revised-versions-of-this-license","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"14. Revised Versions of this License","title":"GNU General Public License","text":"Free Software Foundation may publish revised /new versions GNU General Public License time time. new versions similar spirit present version, may differ detail address new problems concerns. version given distinguishing version number. Program specifies certain numbered version GNU General Public License later version applies , option following terms conditions either numbered version later version published Free Software Foundation. Program specify version number GNU General Public License, may choose version ever published Free Software Foundation. Program specifies proxy can decide future versions GNU General Public License can used, proxy’s public statement acceptance version permanently authorizes choose version Program. Later license versions may give additional different permissions. However, additional obligations imposed author copyright holder result choosing follow later version.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_15-disclaimer-of-warranty","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"15. Disclaimer of Warranty","title":"GNU General Public License","text":"WARRANTY PROGRAM, EXTENT PERMITTED APPLICABLE LAW. EXCEPT OTHERWISE STATED WRITING COPYRIGHT HOLDERS /PARTIES PROVIDE PROGRAM  WITHOUT WARRANTY KIND, EITHER EXPRESSED IMPLIED, INCLUDING, LIMITED , IMPLIED WARRANTIES MERCHANTABILITY FITNESS PARTICULAR PURPOSE. ENTIRE RISK QUALITY PERFORMANCE PROGRAM . PROGRAM PROVE DEFECTIVE, ASSUME COST NECESSARY SERVICING, REPAIR CORRECTION.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_16-limitation-of-liability","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"16. Limitation of Liability","title":"GNU General Public License","text":"EVENT UNLESS REQUIRED APPLICABLE LAW AGREED WRITING COPYRIGHT HOLDER, PARTY MODIFIES /CONVEYS PROGRAM PERMITTED , LIABLE DAMAGES, INCLUDING GENERAL, SPECIAL, INCIDENTAL CONSEQUENTIAL DAMAGES ARISING USE INABILITY USE PROGRAM (INCLUDING LIMITED LOSS DATA DATA RENDERED INACCURATE LOSSES SUSTAINED THIRD PARTIES FAILURE PROGRAM OPERATE PROGRAMS), EVEN HOLDER PARTY ADVISED POSSIBILITY DAMAGES.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"id_17-interpretation-of-sections-15-and-16","dir":"","previous_headings":"TERMS AND CONDITIONS","what":"17. Interpretation of Sections 15 and 16","title":"GNU General Public License","text":"disclaimer warranty limitation liability provided given local legal effect according terms, reviewing courts shall apply local law closely approximates absolute waiver civil liability connection Program, unless warranty assumption liability accompanies copy Program return fee. END TERMS CONDITIONS","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/LICENSE.html","id":"how-to-apply-these-terms-to-your-new-programs","dir":"","previous_headings":"","what":"How to Apply These Terms to Your New Programs","title":"GNU General Public License","text":"develop new program, want greatest possible use public, best way achieve make free software everyone can redistribute change terms. , attach following notices program. safest attach start source file effectively state exclusion warranty; file least copyright line pointer full notice found. Also add information contact electronic paper mail. program terminal interaction, make output short notice like starts interactive mode: hypothetical commands show w show c show appropriate parts General Public License. course, program’s commands might different; GUI interface, use box. also get employer (work programmer) school, , sign copyright disclaimer program, necessary. information , apply follow GNU GPL, see . GNU General Public License permit incorporating program proprietary programs. program subroutine library, may consider useful permit linking proprietary applications library. want , use GNU Lesser General Public License instead License. first, please read .","code":" Copyright (C) 2018 Indrajeet Patil This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ipmisc Copyright (C) 2018 Indrajeet Patil This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/SUPPORT.html","id":null,"dir":"","previous_headings":"","what":"Getting help with ggstatsplot","title":"Getting help with ggstatsplot","text":"Thanks using ggstatsplot. filing issue, places explore pieces put together make process smooth possible. Start making minimal reproducible example using reprex package. haven’t heard used reprex , ’re treat! Seriously, reprex make R-question-asking endeavors easier (pretty insane ROI five ten minutes ’ll take learn ’s ). additional reprex pointers, check Get help! section tidyverse site. Armed reprex, next step figure ask. ’s question: start community.rstudio.com, /StackOverflow. people answer questions. ’s bug: ’re right place, file issue. ’re sure: let community help figure ! problem bug feature request, can easily return report . opening new issue, sure search issues pull requests make sure bug hasn’t reported /already fixed development version. default, search pre-populated :issue :open. can edit qualifiers (e.g. :pr, :closed) needed. example, ’d simply remove :open search issues repo, open closed. right place, need file issue, please review “File issues” paragraph tidyverse contributing guidelines. Thanks help!","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"additional-vignettes","dir":"Articles","previous_headings":"","what":"Additional vignettes","title":"Additional vignettes","text":"Due size constraints, available vignettes available website package: https://indrajeetpatil.github.io/ggstatsplot/articles/","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"vignettes-for-individual-functions","dir":"Articles","previous_headings":"Additional vignettes","what":"Vignettes for individual functions","title":"Additional vignettes","text":"ggbetweenstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html ggwithinstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html ggcorrmat: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html gghistostats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html ggdotplotstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html ggpiestats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html ggscatterstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html ggcoefstats: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"general-vignettes","dir":"Articles","previous_headings":"Additional vignettes","what":"General vignettes","title":"Additional vignettes","text":"Frequently Asked Questions (FAQ): https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html Graphic design statistical reporting principles guiding ggstatsplot development: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html Examples illustrating use purrr extend ggstatsplot functionality: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html Pairwise comparisons ggstatsplot: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"publication","dir":"Articles","previous_headings":"","what":"Publication","title":"Additional vignettes","text":"journal articles describing philosophy principles behind package: https://joss.theoj.org/papers/10.21105/joss.03167","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"presentation","dir":"Articles","previous_headings":"","what":"Presentation","title":"Additional vignettes","text":"addition vignettes, another quick way get overview package go following slides: https://indrajeetpatil.github.io/intro--ggstatsplot/#/ggstatsplot-informative-statistical-visualizations","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"statistical-backend-of-ggstatsplot","dir":"Articles","previous_headings":"","what":"Statistical backend of {ggstatsplot}","title":"Additional vignettes","text":"statsExpressions package forms statistical backend processes data creates data frames expressions containing results statistical tests. exhaustive documentation package, see: https://indrajeetpatil.github.io/statsExpressions/","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/additional.html","id":"suggestions","dir":"Articles","previous_headings":"","what":"Suggestions","title":"Additional vignettes","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"Graphical displays can reveal problems statistical model might apparent purely numerical summaries. visualizations can also helpful reader evaluate validity model reported scholarly publication report. , given onerous costs involved, researchers often avoid preparing information-rich graphics exploring several statistical approaches tests available. ggstatsplot package R programming language (R Core Team, 2021) provides one-line syntax enrich ggplot2-based visualizations results statistical analysis embedded visualization . , package helps researchers adopt rigorous, reliable, robust data exploratory reporting workflow.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"statement-of-need","dir":"Articles","previous_headings":"","what":"Statement of Need","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"typical data analysis workflow, data visualization statistical modeling two different phases: visualization informs modeling, turn, modeling can suggest different visualization method, forth (Wickham & Grolemund, 2016). central idea ggstatsplot simple: combine two phases one form informative graphic statistical details. discussing benefits approach, show example (Figure 1). Example plot ggstatsplot package illustrating philosophy juxtaposing informative visualizations details statistical analysis. see supported plots statistical analyses, see package website: can seen, single line code, function produces details descriptive statistics, inferential statistics, effect size estimate uncertainty, pairwise comparisons, Bayesian hypothesis testing, Bayesian posterior estimate uncertainty. Moreover, details juxtaposed informative well-labeled visualizations. defaults designed follow best practices data visualization (Cleveland, 1985; Grant, 2018; Healy, 2018; Tufte, 2001; Wilke, 2019) (frequentist/Bayesian) statistical reporting (American Psychological Association, 2019; van Doorn et al., 2020). Without ggstatsplot, getting statistical details customizing plot require significant amount time effort. words, package removes trade-often faced researchers ease thoroughness data exploration cements good data exploration habits. Internally, data cleaning carried using tidyverse (Wickham et al., 2019), statistical analysis carried via statsExpressions (Patil, 2021) easystats (Ben-Shachar et al., 2020; Lüdecke et al., 2019, 2020, 2021; Makowski et al., 2019, 2020) packages. visualizations constructed using grammar graphics framework (Wilkinson, 2012), implemented ggplot2 package (Wickham, 2016).","code":"ggbetweenstats(iris, Species, Sepal.Length)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"benefits","dir":"Articles","previous_headings":"","what":"Benefits","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"summary, benefits ggstatsplot’s approach following. : produces charts displaying raw data, numerical plus graphical summary indices, avoids errors increases reproducibility statistical reporting, highlights importance effect providing effect size measures default, provides easy way evaluate absence effect using Bayes factors, encourages researchers readers evaluate statistical assumptions model context underlying data (Figure 2), easy simple enough someone little coding experience can use without making error may even encourage beginners programmatically analyze data, instead using GUI software. Comparing ‘Standard’ approach reporting statistical analysis publication/report ‘ggstatsplot’ approach reporting analysis next informative graphic. Note results described ‘Standard’ approach ‘Dinosaur’ dataset plotted right. Without accompanying visualization, hard evaluate validity results. ideal reporting practice hybrid two approaches plot contains visual numerical summaries statistical model, narrative provides interpretative context reported statistics.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"future-scope","dir":"Articles","previous_headings":"","what":"Future Scope","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"package ambitious, ongoing, long-term project. currently supports common statistical tests (parametric, non-parametric, robust, Bayesian t-test, one-way ANOVA, contingency table analysis, correlation analysis, meta-analysis, regression analyses, etc.) corresponding visualizations (box/violin plot, scatter plot, dot--whisker plot, pie chart, bar chart, etc.). continue expanding support increasing collection statistical analyses visualizations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"licensing-and-availability","dir":"Articles","previous_headings":"","what":"Licensing and Availability","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"ggstatsplot licensed GNU General Public License (v3.0), source code stored GitHub. spirit honest open science, requests suggestions fixes, feature updates, well general questions concerns encouraged via direct interaction contributors developers filing issue respecting Contribution Guidelines.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/ggstatsplot.html","id":"acknowledgements","dir":"Articles","previous_headings":"","what":"Acknowledgements","title":"Visualizations with statistical details: The 'ggstatsplot' approach","text":"like acknowledge support Mina Cikara, Fiery Cushman, Iyad Rahwan development project. ggstatsplot relies heavily easystats ecosystem, collaborative project created facilitate usage R statistical analyses. Thus, like thank members easystats well users. additionally like thank contributors ggstatsplot reporting bugs, providing helpful feedback, helping enhancements.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-just-want-the-plot-not-the-statistical-details--how-can-i-turn-them-off","dir":"Articles > Web_only","previous_headings":"","what":"1. I just want the plot, not the statistical details. How can I turn them off?","title":"Frequently Asked Questions (FAQ)","text":"functions ggstatsplot display results statistical analysis subtitle argument results.subtitle. Setting FALSE return plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-customize-the-details-contained-in-the-subtitle","dir":"Articles > Web_only","previous_headings":"","what":"2. How can I customize the details contained in the subtitle?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may wish include many details subtitle. case, can extract expression copy-paste part wish include. example, statistic p-values included:","code":"library(ggplot2) library(statsExpressions) # extracting detailed expression data_results <- oneway_anova(iris, Species, Sepal.Length, var.equal = TRUE) data_results$expression[[1]] #> list(italic(\"F\")[\"Fisher\"](2, 147) == \"119.26\", italic(p) == #> \"1.67e-31\", widehat(omega[\"p\"]^2) == \"0.61\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"150\") # adapting the details to your liking ggplot(iris, aes(x = Species, y = Sepal.Length)) + geom_boxplot() + labs(subtitle = ggplot2::expr(paste( italic(\"F\"), \"(\", \"2\", \",\", \"147\", \")=\", \"119.26\", \", \", italic(\"p\"), \"<\", \"0.001\" )))"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-am-getting-error-in-grid-call-error","dir":"Articles > Web_only","previous_headings":"","what":"3. I am getting Error in grid.Call error","title":"Frequently Asked Questions (FAQ)","text":"Sometimes, working RStudio, might see following error- can possibly solved increasing size RStudio viewer pane.","code":"Error in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : polygon edge not found"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"why-do-i-get-only-plot-in-return-but-not-the-subtitlecaption","dir":"Articles > Web_only","previous_headings":"","what":"4. Why do I get only plot in return but not the subtitle/caption?","title":"Frequently Asked Questions (FAQ)","text":"order prevent entire plotting function failing statistical analysis fails, functions ggstatsplot default first attempting run analysis fail, return empty (NULL) subtitle/caption. cases, wish diagnose analysis failing, using underlying function used carry statistical analysis. example, following returns plot statistical details subtitle. see statistical analysis failed, can look error underlying function:","code":"df <- data.frame(x = 1, y = 2) ggscatterstats(df, x, y, type = \"robust\") library(statsExpressions) df <- data.frame(x = 1, y = 2) corr_test(df, x, y, type = \"robust\") #> # A tibble: 1 × 14 #> parameter1 parameter2 effectsize estimate conf.level conf.low #> #> 1 x y Winsorized NA correlation NA 0.95 NA #> conf.high statistic df.error p.value method n.obs #> #> 1 NA NA NA NA Winsorized NA correlation 1 #> conf.method expression #> #> 1 normal "},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"what-statistical-test-was-carried-out","dir":"Articles > Web_only","previous_headings":"","what":"5. What statistical test was carried out?","title":"Frequently Asked Questions (FAQ)","text":"case sure statistical test produced results shown subtitle plot, best way get information either look documentation function used check associated vignette. Summary analysis handily available README: https://github.com/IndrajeetPatil/ggstatsplot/blob/master/README.md","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-use-ggstatsplot-functions-in-a-for-loop","dir":"Articles > Web_only","previous_headings":"","what":"6. How can I use {ggstatsplot} functions in a for loop?","title":"Frequently Asked Questions (FAQ)","text":"Given functions ggstatsplot use tidy evaluation, running functions loop requires minor adjustment inputs entered: said, repeating function execution across multiple columns data frame want , recommend purrr-based solution: solution work x y arguments, grouping.var argument, first needs converted symbol:","code":"col.name <- colnames(mtcars) # executing the function in a `for` loop for (i in 3:length(col.name)) { ggbetweenstats( data = mtcars, x = cyl, y = !!col.name[i] ) } df <- dplyr::filter(movies_long, genre == \"Comedy\" | genre == \"Drama\") grouped_ggscatterstats( data = df, x = !!colnames(df)[3], y = !!colnames(df)[5], grouping.var = !!rlang::sym(colnames(df)[8]), results.subtitle = FALSE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-have-uniform-y-axes-ranges-in-grouped_-functions","dir":"Articles > Web_only","previous_headings":"","what":"7. How can I have uniform Y-axes ranges in grouped_ functions?","title":"Frequently Asked Questions (FAQ)","text":"Across different facets grouped_ plot, axes ranges might sometimes differ. can use ggplot.component parameter (present functions) scale across individual plots:","code":"# provide a list of further `{ggplot2}` modifications using `ggplot.component` grouped_ggscatterstats( mtcars, disp, hp, grouping.var = am, results.subtitle = FALSE, ggplot.component = list(ggplot2::scale_y_continuous( breaks = seq(50, 350, 50), limits = (c(50, 350)) )) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"does-ggstatsplot-work-with-plotly","dir":"Articles > Web_only","previous_headings":"","what":"8. Does {ggstatsplot} work with plotly?","title":"Frequently Asked Questions (FAQ)","text":"plotly R graphing library makes easy produce interactive web graphics via plotly.js. ggstatsplot functions compatible plotly.","code":"library(plotly) # creating ggplot object with `{ggstatsplot}` p <- ggbetweenstats(mtcars, cyl, mpg) # converting to plotly object plotly::ggplotly(p, width = 480, height = 480)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-use-grouped_-functions-with-more-than-one-group","dir":"Articles > Web_only","previous_headings":"","what":"9. How can I use grouped_ functions with more than one group?","title":"Frequently Asked Questions (FAQ)","text":"Currently, grouped_ variants functions support repeating analysis across single grouping variable. Often, run analysis across combination two grouping variables. can easily achieved using purrr package. example-","code":"# creating a list by splitting data frame by combination of two different # grouping variables df_list <- mpg %>% dplyr::filter(drv %in% c(\"4\", \"f\"), fl %in% c(\"p\", \"r\")) %>% split(f = list(.$drv, .$fl), drop = TRUE) # checking if the length of the list is 4 length(df_list) #> [1] 4 # running correlation analyses between; this will return a *list* of plots plot_list <- purrr::pmap( .l = list( data = df_list, x = \"displ\", y = \"hwy\", results.subtitle = FALSE ), .f = ggscatterstats ) # arrange the list in a single plot grid combine_plots( plotlist = plot_list, plotgrid.args = list(nrow = 2), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-include-statistical-expressions-in-facet-labels","dir":"Articles > Web_only","previous_headings":"","what":"10. How can I include statistical expressions in facet labels?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(ggplot2) # data mtcars1 <- mtcars p <- grouped_ggbetweenstats( data = mtcars1, x = cyl, y = mpg, grouping.var = am ) expr1 <- extract_subtitle(p[[1L]]) expr2 <- extract_subtitle(p[[2L]]) mtcars1$am <- factor(mtcars1$am, levels = c(0, 1), labels = c(expr1, expr2)) mtcars1 %>% ggplot(aes(x = cyl, y = mpg)) + geom_jitter() + facet_wrap( vars(am), ncol = 1, strip.position = \"top\", labeller = ggplot2::label_parsed )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-customize-which-pairs-are-shown-in-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"11. How to customize which pairs are shown in pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"Currently, ggbetweenstats ggwithinstats, can either display significant comparisons, non-significant comparisons, comparisons. interested just one particular comparison? workaround using ggsignif:","code":"library(ggsignif) ggbetweenstats(mtcars, cyl, wt, pairwise.display = \"none\") + geom_signif(comparisons = list(c(\"4\", \"6\")), test.args = list(exact = FALSE))"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-access-data-frame-with-results-from-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"12. How to access data frame with results from pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"Behind scenes, ggstatsplot uses statsExpressions::pairwise_comparisons() function. can use extract actual data frames used ggstatsplot functions.","code":"library(ggplot2) pairwise_comparisons(mtcars, cyl, wt) #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell "},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-change-annotation-in-pairwise-comparisons","dir":"Articles > Web_only","previous_headings":"","what":"13. How can I change annotation in pairwise comparisons?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot defaults displaying exact p-values logged Bayes Factor values pairwise comparisons. wish adopt different annotation labels? customize :","code":"library(ggplot2) library(ggsignif) # converting to factor mtcars$cyl <- as.factor(mtcars$cyl) # creating the base plot p <- ggbetweenstats(mtcars, cyl, wt, pairwise.display = \"none\") # using `pairwise_comparisons()` function to create a data frame with results df <- pairwise_comparisons(mtcars, cyl, wt) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) %>% dplyr::mutate(asterisk_label = c(\"**\", \"***\", \"**\")) df #> # A tibble: 3 × 11 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression groups asterisk_label #> #> 1 Games-Howell ** #> 2 Games-Howell *** #> 3 Games-Howell ** # adding pairwise comparisons using `{ggsignif}` package p + ggsignif::geom_signif( comparisons = df$groups, map_signif_level = TRUE, annotations = df$asterisk_label, y_position = c(5.5, 5.75, 6.0), test = NULL, na.rm = TRUE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-access-data-frame-containing-statistical-analyses","dir":"Articles > Web_only","previous_headings":"","what":"14. How to access data frame containing statistical analyses?","title":"Frequently Asked Questions (FAQ)","text":"can use extract_stats() helper function .","code":"library(ggplot2) p <- ggpiestats(mtcars, am, cyl) # data frame with results extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize estimate #> #> 1 8.74 2 0.0126 Pearson's Chi-squared test Cramer's V (adj.) 0.464 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0 0.820 ncp chisq 32 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.415 0 0.671 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 16.8 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 2.82 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 6 × 5 #> cyl am counts perc .label #> #> 1 4 1 8 72.7 73% #> 2 6 1 3 42.9 43% #> 3 8 1 2 14.3 14% #> 4 4 0 3 27.3 27% #> 5 6 0 4 57.1 57% #> 6 8 0 12 85.7 86% #> #> $one_sample_data #> # A tibble: 3 × 19 #> cyl counts perc N statistic df p.value #> #> 1 8 14 43.8 (n = 14) 7.14 1 0.00753 #> 2 6 7 21.9 (n = 7) 0.143 1 0.705 #> 3 4 11 34.4 (n = 11) 2.27 1 0.132 #> method effectsize estimate conf.level #> #> 1 Chi-squared test for given probabilities Pearson's C 0.581 0.95 #> 2 Chi-squared test for given probabilities Pearson's C 0.141 0.95 #> 3 Chi-squared test for given probabilities Pearson's C 0.414 0.95 #> conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.186 0.778 ncp chisq 14 #> 2 0 0.652 ncp chisq 7 #> 3 0 0.723 ncp chisq 11 #> .label #> #> 1 list(~chi['gof']^2~(1)==7.14, ~italic(p)=='7.53e-03', ~italic(n)=='14') #> 2 list(~chi['gof']^2~(1)==0.14, ~italic(p)=='0.71', ~italic(n)=='7') #> 3 list(~chi['gof']^2~(1)==2.27, ~italic(p)=='0.13', ~italic(n)=='11') #> .p.label #> #> 1 list(~italic(p)=='7.53e-03') #> 2 list(~italic(p)=='0.71') #> 3 list(~italic(p)=='0.13') #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-remove-a-particular-geom-layer-from-the-plot","dir":"Articles > Web_only","previous_headings":"","what":"15. How can I remove a particular geom layer from the plot?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may want particular geom layer displayed. can remove setting transparency (alpha) layer 0. example, let’s say want remove points ggwithintstats() plot:","code":"# before ggwithinstats( data = bugs_long, x = condition, y = desire, results.subtitle = FALSE, pairwise.display = \"none\" ) # after ggwithinstats( data = bugs_long, x = condition, y = desire, point.args = list(alpha = 0), results.subtitle = FALSE, pairwise.display = \"none\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-modify-the-fill-colors-with-custom-values","dir":"Articles > Web_only","previous_headings":"","what":"16. How can I modify the fill colors with custom values?","title":"Frequently Asked Questions (FAQ)","text":"Sometimes may satisfied available color palette values. case, can also change colors manually specifying values. can also done grouped_ functions:","code":"library(ggplot2) ggbarstats(mtcars, am, cyl, results.subtitle = FALSE) + scale_fill_manual(values = c(\"#E7298A\", \"#66A61E\")) grouped_ggpiestats( data = mtcars, grouping.var = am, x = cyl, ggplot.component = ggplot2::scale_fill_grey() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-modify-grouped_-outputs-using-ggplot2-functions","dir":"Articles > Web_only","previous_headings":"","what":"17. How can I modify grouped_ outputs using {ggplot2} functions?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot ggplot objects, can modified, just like ggplot object. exception plots returned grouped_ functions, way tackle .","code":"library(paletteer) library(ggplot2) grouped_ggbetweenstats( mtcars, cyl, wt, grouping.var = am, results.subtitle = FALSE, pairwise.display = \"none\", # modify further with `{ggplot2}` functions ggplot.component = list( scale_color_manual(values = paletteer::paletteer_c(\"viridis::viridis\", 3)), theme(axis.text.x = element_text(angle = 90)) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-extract-data-frame-containing-results-from-ggstatsplot","dir":"Articles > Web_only","previous_headings":"","what":"18. How can I extract data frame containing results from {ggstatsplot}?","title":"Frequently Asked Questions (FAQ)","text":"ggstatsplot can return expressions subtitle caption, want actually get back data frame containing results? two options: Use ggstatsplot::extract_stats() function go source package statsExpressions (see examples)","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-remove-sample-size-labels-for-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"19. How can I remove sample size labels for ggbarstats?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(gginnards) ## create a plot p <- ggbarstats(mtcars, am, cyl) ## remove layer corresponding to sample size delete_layers(p, \"GeomText\")"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"statistical-analysis-i-want-to-carry-out-is-not-available--what-can-i-do","dir":"Articles > Web_only","previous_headings":"","what":"20. Statistical analysis I want to carry out is not available. What can I do?","title":"Frequently Asked Questions (FAQ)","text":"default, since ggstatsplot always allows just one type test per statistical approach, sometimes favorite test might available. example, ggstatsplot provides Spearman’s ρ\\rho, Kendall’s τ\\tau non-parametric correlation test. cases, can override defaults use statsExpressions create custom expressions display plot. forewarned expression building function statsExpressions stable yet.","code":"library(correlation) library(statsExpressions) library(ggplot2) # data with two variables of interest df <- dplyr::select(mtcars, wt, mpg) # correlation results results <- correlation(df, method = \"kendall\") %>% insight::standardize_names(style = \"broom\") # creating expression out of these results df_results <- statsExpressions::add_expression_col( data = results, no.parameters = 0L, statistic.text = list(quote(italic(\"T\"))), effsize.text = list(quote(widehat(italic(tau))[\"Kendall\"])), n = results$n.obs[[1]] ) # using custom expression in plot ggscatterstats(df, wt, mpg, results.subtitle = FALSE) + labs(subtitle = df_results$expression[[1]])"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"is-there-way-to-adjust-my-alpha-level","dir":"Articles > Web_only","previous_headings":"","what":"21. Is there way to adjust my alpha level?","title":"Frequently Asked Questions (FAQ)","text":", way adjust alpha use grouped_ functions (e.g., grouped_ggwithinstats). just report paper/article/report, adjusted alpha . , example, iif 2 tests carried , alpha going 0.05/2 = 0.025. , describe Methods section, can mention tests considered significant p < 0.025. can even mention caption.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-can-i-build-a-shiny-app-using-ggstatsplot-functions","dir":"Articles > Web_only","previous_headings":"","what":"22. How can I build a Shiny app using {ggstatsplot} functions?","title":"Frequently Asked Questions (FAQ)","text":"example using ggbetweenstats function.","code":"library(shiny) library(rlang) ui <- fluidPage( headerPanel(\"Example - ggbetweenstats\"), sidebarPanel( selectInput(\"x\", \"xcol\", \"X Variable\", choices = names(iris)[5]), selectInput(\"y\", \"ycol\", \"Y Variable\", choices = names(iris)[1:4]) ), mainPanel(plotOutput(\"plot\")) ) server <- function(input, output) { output$plot <- renderPlot({ ggbetweenstats(iris, !!input$x, !!input$y) }) } shinyApp(ui, server)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-change-size-of-annotations-for-combined-plot-in-grouped_-functions","dir":"Articles > Web_only","previous_headings":"","what":"23. How to change size of annotations for combined plot in grouped_* functions?","title":"Frequently Asked Questions (FAQ)","text":"","code":"library(ggplot2) grouped_ggbetweenstats( data = dplyr::filter(ggplot2::mpg, drv != \"4\"), x = year, y = hwy, grouping.var = drv, results.subtitle = FALSE, ## arguments given to `{patchwork}` for combining plots annotation.args = list( title = \"this is my title\", subtitle = \"this is my subtitle\", theme = ggplot2::theme( plot.subtitle = element_text(size = 20), plot.title = element_text(size = 30) ) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-change-size-of-text-in-the-subtitle","dir":"Articles > Web_only","previous_headings":"","what":"24. How to change size of text in the subtitle?","title":"Frequently Asked Questions (FAQ)","text":"","code":"ggbetweenstats( data = iris, x = Species, y = Sepal.Length, ggplot.component = list(theme(plot.subtitle = element_text(size = 20, face = \"bold\"))) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-display-pairwise-comparison-letter-in-a-plot","dir":"Articles > Web_only","previous_headings":"","what":"25. How to display pairwise comparison letter in a plot?","title":"Frequently Asked Questions (FAQ)","text":"possible box, see comment.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"does-ggstatsplot-carry-out-assumption-checks","dir":"Articles > Web_only","previous_headings":"","what":"26. Does {ggstatsplot} carry out assumption checks?","title":"Frequently Asked Questions (FAQ)","text":", ggstatsplot carry analysis whether assumptions met . just carry whatever test ask carry . check assumptions, can use different package called performance: https://easystats.github.io/performance/reference/index.html#check-model-assumptions--data-properties","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"i-am-on-ubuntu-and-have-trouble-installing-pmcmrplus","dir":"Articles > Web_only","previous_headings":"","what":"27. I am on Ubuntu and have trouble installing {PMCMRplus}?","title":"Frequently Asked Questions (FAQ)","text":"Linux users may encounter installation problems. particular, ggstatsplot package depends {PMCMRplus} package. means operating system lacks gmp Rmpfr libraries. use Ubuntu, can install dependencies: following README file briefly describes installation procedure: https://CRAN.R-project.org/package=PMCMRplus/readme/README.html MacOS, look post.","code":"ERROR: dependencies ‘gmp’, ‘Rmpfr’ are not available for package ‘PMCMRplus’ sudo apt-get install libgmp3-dev sudo apt-get install libmpfr-dev"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-modify-the-secondary-y-axis-title","dir":"Articles > Web_only","previous_headings":"","what":"28. How to modify the secondary Y-axis title?","title":"Frequently Asked Questions (FAQ)","text":"","code":"ggbetweenstats( mtcars, cyl, wt, ggplot.component = list( ggplot2::scale_y_continuous(sec.axis = ggplot2::dup_axis(name = \"My custom test\")) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"how-to-turn-off-scientific-notation-in-expressions","dir":"Articles > Web_only","previous_headings":"","what":"29. How to turn off scientific notation in expressions?","title":"Frequently Asked Questions (FAQ)","text":"","code":"set.seed(123) library(ggstatsplot) library(WRS2) ggwithinstats( WineTasting, Wine, Taste, paired = TRUE ) ggwithinstats( WineTasting, Wine, Taste, paired = TRUE, digits = 4L )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Frequently Asked Questions (FAQ)","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"introduction-to-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Introduction to ggbarstats","title":"ggbarstats","text":"function ggbarstats can used quick data exploration /prepare publication-ready pie charts summarize statistical relationship(s) among one categorical variables. see examples use function vignette. begin , instances want use ggbarstats- check proportion observations matches hypothesized proportion, typically known “Goodness Fit” test see frequency distribution two categorical variables independent using contingency table analysis check proportion observations level categorical variable equal Note: following demo uses pipe operator (%>%), familiar operator, good explanation: http://r4ds..co.nz/pipes.html. ggbarstats works data organized data frames tibbles. work data structures like base-R tables matrices. can operate data frames organized one row per observation data frames one column containing counts. vignette provides examples (see examples ). help demonstrate ggbarstats can used categorical (also known nominal) data, modified version original Titanic dataset (datasets library) provided ggstatsplot package name Titanic_full. Titanic Passenger Survival Dataset provides information “fate passengers fatal maiden voyage ocean liner Titanic, including economic status (class), sex, age, survival.” Let’s look structure .","code":"library(dplyr) # looking at the original data in tabular format dplyr::glimpse(Titanic) #> 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ... #> - attr(*, \"dimnames\")=List of 4 #> ..$ Class : chr [1:4] \"1st\" \"2nd\" \"3rd\" \"Crew\" #> ..$ Sex : chr [1:2] \"Male\" \"Female\" #> ..$ Age : chr [1:2] \"Child\" \"Adult\" #> ..$ Survived: chr [1:2] \"No\" \"Yes\" # looking at the dataset as a tibble or data frame dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"independence-or-association-with-ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Independence (or association) with ggbarstats","title":"ggbarstats","text":"Let’s next investigate whether passenger’s sex independent , associated , survival status, .e., want test whether proportion people survived different sexes. plot clearly shows survival rates different males females. Pearson’s χ2\\chi^2-test independence significant given large sample size. Additionally, females males, survival rates significantly different 50% indicated goodness fit test gender.","code":"ggbarstats( data = Titanic_full, x = Survived, y = Sex )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"grouped-analysis-with-grouped_ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggbarstats","title":"ggbarstats","text":"want analysis gender also factor passenger’s age (Age)? information classifies passengers Child Adult, perhaps makes difference survival rate? ggstatsplot provides special helper function instances: grouped_ggbarstats. convenient wrapper function around combine_plots. applies ggbarstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. resulting pie charts statistics make story clear. adults gender much matters. Women survived much higher rates men. children gender significantly associated survival male female children survival rate significantly different 50/50.","code":"grouped_ggbarstats( # arguments relevant for `ggbarstats()` data = Titanic_full, x = Survived, y = Sex, grouping.var = Age, digits.perc = 1, package = \"ggsci\", palette = \"category10_d3\", # arguments relevant for `combine_plots()` title.text = \"Passenger survival on the Titanic by gender and age\", caption.text = \"Asterisks denote results from proportion tests; \\n***: p < 0.001, ns: non-significant\", plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"grouped-analysis-with-ggbarstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggbarstats + {purrr}","title":"ggbarstats","text":"Although grouped_ggbarstats provides quick way explore data, leaves much desired. example, may want add different captions, titles, themes, palettes level grouping variable, etc. cases like , better use purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"working-with-data-organized-by-counts","dir":"Articles > Web_only","previous_headings":"","what":"Working with data organized by counts","title":"ggbarstats","text":"ggbarstats can also work data frame containing counts (aka tabled data), .e., row doesn’t correspond unique observation. example, consider following notional fishing data frame containing data two boats (B) number different types fish caught months February March. data frame, row corresponds unique combination Boat Month. data organized way, make slightly different call ggbarstats() function: use counts argument. want investigate relationship type fish month (test independence), command : results support hypothesis type fish caught related month ’re fishing. χ2\\chi^2 independence test results top plot. February catch significantly Haddock hypothesize equal distribution. Whereas March results indicate ’s strong evidence distribution isn’t equal.","code":"# (this is completely fictional; I don't know first thing about fishing!) fishing <- tibble::as_tibble(data.frame( Boat = c(rep(\"B\", 4), rep(\"A\", 4), rep(\"A\", 4), rep(\"B\", 4)), Month = c(rep(\"February\", 2), rep(\"March\", 2), rep(\"February\", 2), rep(\"March\", 2)), Fish = c( \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\", \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\" ), SumOfCaught = c(25, 20, 35, 40, 40, 25, 30, 42, 40, 30, 33, 26, 100, 30, 20, 20) )) fishing #> # A tibble: 16 × 4 #> Boat Month Fish SumOfCaught #> #> 1 B February Bass 25 #> 2 B February Catfish 20 #> 3 B March Cod 35 #> 4 B March Haddock 40 #> 5 A February Cod 40 #> 6 A February Haddock 25 #> 7 A March Bass 30 #> 8 A March Catfish 42 #> 9 A February Bass 40 #> 10 A February Catfish 30 #> 11 A March Cod 33 #> 12 A March Haddock 26 #> 13 B February Cod 100 #> 14 B February Haddock 30 #> 15 B March Bass 20 #> 16 B March Catfish 20 ggbarstats( data = fishing, x = Fish, y = Month, counts = SumOfCaught, label = \"both\", package = \"ggsci\", palette = \"default_jama\", title = \"Type fish caught by month\", caption = \"Source: completely made up\", legend.title = \"Type fish caught: \" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggbarstats","text":"Let’s imagine ’re conducting clinical trials new imaginary wonder drug. 134 subjects entering trial. enter healthy (n = 96), enter trial already sick (n = 38). receive treatment intervention. check back month see healthy sick. classic pre/post experimental design. ’re interested seeing change groupings. case within-subjects designs, can set paired = TRUE, display results McNemar test subtitle. (Note: forget set paired = TRUE, results inaccurate.) results bode well experimental wonder drug. 96 started healthy 4% sick month. Ideally, hoped zero reality seldom perfect. side 38 started sick number reduced just 13 34% marked improvement.","code":"# create imaginary data clinical_trial <- tibble::tribble( ~SickBefore, ~SickAfter, ~Counts, \"No\", \"Yes\", 4, \"Yes\", \"No\", 25, \"Yes\", \"Yes\", 13, \"No\", \"No\", 92 ) ggbarstats( data = clinical_trial, x = SickAfter, y = SickBefore, counts = Counts, paired = TRUE, label = \"both\", title = \"Results from imaginary clinical trial\", package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggbarstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggbarstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s χ2\\chi^2-test independence revealed , across 32 automobiles, showed significant association transmission engine number cylinders. Bayes Factor analysis revealed data 16.78 times probable alternative hypothesis compared null hypothesis. can considered strong evidence (Jeffreys, 1961) favor alternative hypothesis.","code":"ggbarstats(mtcars, am, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggbarstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"comparisons-between-groups-with-ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"Comparisons between groups with ggbetweenstats","title":"ggbetweenstats","text":"illustrate function can used, use gapminder dataset throughout vignette. dataset provides values life expectancy, GDP per capita, population, 5 year intervals, 1952 2007, 142 countries (courtesy Gapminder Foundation). Let’s look data- Note: remainder vignette, ’re going exclude Oceania analysis simply observations (countries). Suppose first thing want inspect distribution life expectancy countries continent 2007. also want know mean differences life expectancy continents statistically significant. simplest form function call - Note: function automatically decides whether independent samples t-test preferred (2 groups) Oneway ANOVA (3 groups). based number levels grouping variable. output function ggplot object means can modified ggplot2 functions. can seen plot, function default returns Bayes Factor test. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayes Factor values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF10)log_{e}(BF_{01}) = - log_{e}(BF_{10})). can make output much aesthetically pleasing well informative making use many optional parameters ggbetweenstats. ’ll add title caption, better x y axis labels. can change overall theme well color palette use. can appreciated effect size (partial eta squared) 0.635, large differences mean life expectancy across continents. Importantly, plot also helps us appreciate distributions within given continent. example, although Asian countries much better African countries, average, Afghanistan particularly grim average Asian continent, possibly reflecting war political turmoil. far used classic parametric test boxviolin plot, can also use available options: type (test) argument also accepts following abbreviations: \"p\" (parametric), \"np\" (nonparametric), \"r\" (robust), \"bf\" (Bayes Factor). type plot displayed can also modified (\"box\", \"violin\", \"boxviolin\"). color palettes can modified. Let’s use combine_plots function make one plot four separate plots demonstrates options. Let’s compare life expectancy countries first last year available data 1957 2007. generate plots one one use combine_plots merge one plot common labeling. possible, necessarily recommended, make plot different colors themes. example,","code":"library(gapminder) dplyr::glimpse(gapminder::gapminder) #> Rows: 1,704 #> Columns: 6 #> $ country \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", … #> $ continent Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, … #> $ year 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, … #> $ lifeExp 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8… #> $ pop 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12… #> $ gdpPercap 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, … ggbetweenstats( data = dplyr::filter(gapminder::gapminder, year == 2007, continent != \"Oceania\"), x = continent, y = lifeExp ) ggbetweenstats( data = dplyr::filter(gapminder, year == 2007, continent != \"Oceania\"), x = continent, ## grouping/independent variable y = lifeExp, ## dependent variables type = \"robust\", ## type of statistics xlab = \"Continent\", ## label for the x-axis ylab = \"Life expectancy\", ## label for the y-axis ## turn off messages ggtheme = ggplot2::theme_gray(), ## a different theme package = \"yarrr\", ## package from which color palette is to be taken palette = \"info2\", ## choosing a different color palette title = \"Comparison of life expectancy across continents (Year: 2007)\", caption = \"Source: Gapminder Foundation\" ) + ## modifying the plot further ggplot2::scale_y_continuous( limits = c(35, 85), breaks = seq(from = 35, to = 85, by = 5) ) ## selecting subset of the data df_year <- dplyr::filter(gapminder::gapminder, year == 2007 | year == 1957) p1 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", # to remove violin plot violin.args = list(width = 0), type = \"p\", conf.level = 0.99, title = \"Parametric test\", package = \"ggsci\", palette = \"nrc_npg\" ) p2 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", # to remove box plot boxplot.args = list(width = 0), type = \"np\", conf.level = 0.99, title = \"Non-parametric Test\", package = \"ggsci\", palette = \"uniform_startrek\" ) p3 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", type = \"r\", conf.level = 0.99, title = \"Robust Test\", tr = 0.005, package = \"wesanderson\", palette = \"Royal2\", digits = 3 ) ## Bayes Factor for parametric t-test and boxviolin plot p4 <- ggbetweenstats( data = df_year, x = year, y = lifeExp, xlab = \"Year\", ylab = \"Life expectancy\", type = \"bayes\", violin.args = list(width = 0), boxplot.args = list(width = 0), point.args = list(alpha = 0), title = \"Bayesian Test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## combining the individual plots into a single plot combine_plots( list(p1, p2, p3, p4), plotgrid.args = list(nrow = 2), annotation.args = list( title = \"Comparison of life expectancy between 1957 and 2007\", caption = \"Source: Gapminder Foundation\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"grouped-analysis-with-grouped_ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggbetweenstats","title":"ggbetweenstats","text":"want analyze continent 1957 2007? combination two previous efforts. ggstatsplot provides special helper function instances: grouped_ggbetweenstats. merely wrapper function around combine_plots. applies ggbetweenstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s focus 4 continents following years: 1967, 1987, 2007. Also, let’s carry pairwise comparisons see differences every pair continents. seen plot, although life expectancy improving steadily across continents go 1967 2007, improvement happening rate continents. Additionally, irrespective year look , still find significant differences life expectancy across continents surprisingly consistent across five decades (based observed effect sizes).","code":"## select part of the dataset and use it for plotting gapminder::gapminder %>% dplyr::filter(year %in% c(1967, 1987, 2007), continent != \"Oceania\") %>% grouped_ggbetweenstats( ## arguments relevant for ggbetweenstats x = continent, y = lifeExp, grouping.var = year, xlab = \"Continent\", ylab = \"Life expectancy\", pairwise.display = \"significant\", ## display only significant pairwise comparisons p.adjust.method = \"fdr\", ## adjust p-values for multiple tests using this method # ggtheme = ggthemes::theme_tufte(), package = \"ggsci\", palette = \"default_jco\", ## arguments relevant for combine_plots annotation.args = list(title = \"Changes in life expectancy across continents (1967-2007)\"), plotgrid.args = list(nrow = 3) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"grouped-analysis-with-ggbetweenstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggbetweenstats + {purrr}","title":"ggbetweenstats","text":"Although grouping function provides quick way explore data, leaves much desired. example, type plot test applied years, maybe want change different years, maybe want gave different effect sizes different years. type customization different levels grouping variable possible grouped_ggbetweenstats, can easily achieved using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggbetweenstats","text":"repeated measures designs, ggwithinstats() function can used: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggbetweenstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggbetweenstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Welch’s t-test revealed , across 60 guinea pigs, although tooth length higher animal received vitamin C via orange juice compared via ascorbic acid, effect statistically significant. effect size (g=0.49)(g = 0.49) medium, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 1.2 times probable alternative hypothesis compared null hypothesis. can considered weak evidence (Jeffreys, 1961) favor alternative hypothesis. Similar reporting style can followed function performs one-way ANOVA instead t-test.","code":"ggbetweenstats(ToothGrowth, supp, len)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggbetweenstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"general-structure-of-the-plots","dir":"Articles > Web_only","previous_headings":"","what":"General structure of the plots","title":"ggcoefstats","text":"Although statistical models displayed plot may differ based class models investigated, aspects plot invariant across models: dot-whisker plot contains dot representing estimate confidence intervals (95% default). estimate can either effect sizes (tests depend F-statistic) regression coefficients (tests t-, χ2\\chi^{2}-, z-statistic), etc. confidence intervals can sometimes asymmetric bootstrapping used. label attached dot provide details statistical test carried typically contain estimate, statistic, p-value. caption contain diagnostic information, available, models can useful model selection: smaller Akaike’s Information Criterion (AIC) Bayesian Information Criterion (BIC) values, “better” model . output function ggplot2 object , thus, can modified (e.g., change themes, etc.) ggplot2 functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"supported-models","dir":"Articles > Web_only","previous_headings":"","what":"Supported models","title":"ggcoefstats","text":"regression models supported underlying packages also supported ggcoefstats().","code":"insight::supported_models() #> [1] \"aareg\" \"afex_aov\" #> [3] \"AKP\" \"Anova.mlm\" #> [5] \"anova.rms\" \"aov\" #> [7] \"aovlist\" \"Arima\" #> [9] \"averaging\" \"bamlss\" #> [11] \"bamlss.frame\" \"bayesQR\" #> [13] \"bayesx\" \"BBmm\" #> [15] \"BBreg\" \"bcplm\" #> [17] \"betamfx\" \"betaor\" #> [19] \"betareg\" \"BFBayesFactor\" #> [21] \"bfsl\" \"BGGM\" #> [23] \"bife\" \"bifeAPEs\" #> [25] \"bigglm\" \"biglm\" #> [27] \"blavaan\" \"blrm\" #> [29] \"bracl\" \"brglm\" #> [31] \"brmsfit\" \"brmultinom\" #> [33] \"btergm\" \"censReg\" #> [35] \"cgam\" \"cgamm\" #> [37] \"cglm\" \"clm\" #> [39] \"clm2\" \"clmm\" #> [41] \"clmm2\" \"clogit\" #> [43] \"coeftest\" \"complmrob\" #> [45] \"confusionMatrix\" \"coxme\" #> [47] \"coxph\" \"coxph_weightit\" #> [49] \"coxph.penal\" \"coxr\" #> [51] \"cpglm\" \"cpglmm\" #> [53] \"crch\" \"crq\" #> [55] \"crqs\" \"crr\" #> [57] \"dep.effect\" \"DirichletRegModel\" #> [59] \"draws\" \"drc\" #> [61] \"eglm\" \"elm\" #> [63] \"emmGrid\" \"epi.2by2\" #> [65] \"ergm\" \"feglm\" #> [67] \"feis\" \"felm\" #> [69] \"fitdistr\" \"fixest\" #> [71] \"flac\" \"flexsurvreg\" #> [73] \"flic\" \"gam\" #> [75] \"Gam\" \"gamlss\" #> [77] \"gamm\" \"gamm4\" #> [79] \"garch\" \"gbm\" #> [81] \"gee\" \"geeglm\" #> [83] \"ggcomparisons\" \"glht\" #> [85] \"glimML\" \"glm\" #> [87] \"Glm\" \"glm_weightit\" #> [89] \"glmerMod\" \"glmgee\" #> [91] \"glmm\" \"glmmadmb\" #> [93] \"glmmPQL\" \"glmmTMB\" #> [95] \"glmrob\" \"glmRob\" #> [97] \"glmx\" \"gls\" #> [99] \"gmnl\" \"hglm\" #> [101] \"HLfit\" \"htest\" #> [103] \"hurdle\" \"iv_robust\" #> [105] \"ivFixed\" \"ivprobit\" #> [107] \"ivreg\" \"lavaan\" #> [109] \"lm\" \"lm_robust\" #> [111] \"lme\" \"lmerMod\" #> [113] \"lmerModLmerTest\" \"lmodel2\" #> [115] \"lmrob\" \"lmRob\" #> [117] \"logistf\" \"logitmfx\" #> [119] \"logitor\" \"logitr\" #> [121] \"LORgee\" \"lqm\" #> [123] \"lqmm\" \"lrm\" #> [125] \"manova\" \"MANOVA\" #> [127] \"marginaleffects\" \"marginaleffects.summary\" #> [129] \"margins\" \"maxLik\" #> [131] \"mblogit\" \"mclogit\" #> [133] \"mcmc\" \"mcmc.list\" #> [135] \"MCMCglmm\" \"mcp1\" #> [137] \"mcp12\" \"mcp2\" #> [139] \"med1way\" \"mediate\" #> [141] \"merMod\" \"merModList\" #> [143] \"meta_bma\" \"meta_fixed\" #> [145] \"meta_random\" \"metaplus\" #> [147] \"mhurdle\" \"mipo\" #> [149] \"mira\" \"mixed\" #> [151] \"MixMod\" \"mixor\" #> [153] \"mjoint\" \"mle\" #> [155] \"mle2\" \"mlm\" #> [157] \"mlogit\" \"mmclogit\" #> [159] \"mmlogit\" \"mmrm\" #> [161] \"mmrm_fit\" \"mmrm_tmb\" #> [163] \"model_fit\" \"multinom\" #> [165] \"multinom_weightit\" \"mvord\" #> [167] \"negbinirr\" \"negbinmfx\" #> [169] \"nestedLogit\" \"ols\" #> [171] \"onesampb\" \"ordinal_weightit\" #> [173] \"orm\" \"pgmm\" #> [175] \"phyloglm\" \"phylolm\" #> [177] \"plm\" \"PMCMR\" #> [179] \"poissonirr\" \"poissonmfx\" #> [181] \"polr\" \"probitmfx\" #> [183] \"psm\" \"Rchoice\" #> [185] \"ridgelm\" \"riskRegression\" #> [187] \"rjags\" \"rlm\" #> [189] \"rlmerMod\" \"RM\" #> [191] \"rma\" \"rma.uni\" #> [193] \"robmixglm\" \"robtab\" #> [195] \"rq\" \"rqs\" #> [197] \"rqss\" \"rvar\" #> [199] \"Sarlm\" \"scam\" #> [201] \"selection\" \"sem\" #> [203] \"SemiParBIV\" \"semLm\" #> [205] \"semLme\" \"serp\" #> [207] \"slm\" \"speedglm\" #> [209] \"speedlm\" \"stanfit\" #> [211] \"stanmvreg\" \"stanreg\" #> [213] \"summary.lm\" \"survfit\" #> [215] \"survreg\" \"svy_vglm\" #> [217] \"svy2lme\" \"svychisq\" #> [219] \"svyglm\" \"svyolr\" #> [221] \"t1way\" \"tobit\" #> [223] \"trimcibt\" \"truncreg\" #> [225] \"vgam\" \"vglm\" #> [227] \"wbgee\" \"wblm\" #> [229] \"wbm\" \"wmcpAKP\" #> [231] \"yuen\" \"yuend\" #> [233] \"zcpglm\" \"zeroinfl\" #> [235] \"zerotrunc\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"examples-of-supported-models","dir":"Articles > Web_only","previous_headings":"","what":"Examples of supported models","title":"ggcoefstats","text":"following examples organized statistics type. used much longer vignette examples wide collection regression models, sake maintainability, removed . old version can found .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"t-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"t-statistic","title":"ggcoefstats","text":"linear model (lm) linear mixed-effects model (lmer/lmerMod) Note mixed-effects models, fixed effects shown confidence intervals random effects terms. case, like see terms, can use parameters::model_parameters().","code":"library(lme4) # lm model mod1 <- stats::lm(formula = Reaction ~ Days, data = sleepstudy) # merMod model mod2 <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy) # combining the two different plots combine_plots( plotlist = list( ggcoefstats(mod1) + ggplot2::labs(x = parse(text = \"'regression coefficient' ~italic(beta)\")), ggcoefstats(mod2) + ggplot2::labs( x = parse(text = \"'regression coefficient' ~italic(beta)\"), y = \"fixed effects\" ) ), plotgrid.args = list(nrow = 2), annotation.args = list(title = \"Relationship between movie budget and its IMDB rating\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"z-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"z-statistic","title":"ggcoefstats","text":"Aalen’s additive regression model censored data (aareg)","code":"library(survival) # model afit <- survival::aareg( formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, dfbeta = TRUE ) ggcoefstats( x = afit, title = \"Aalen's additive regression model\", subtitle = \"(for censored data)\", digits = 3 )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"chi2-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"χ2\\chi^2-statistic","title":"ggcoefstats","text":"Cox proportional hazards regression model (coxph) Another example frailty term.","code":"library(survival) # create the simplest-test data set test1 <- list( time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1) ) # fit a stratified model mod_coxph <- survival::coxph( formula = Surv(time, status) ~ x + strata(sex), data = test1 ) ggcoefstats( x = mod_coxph, title = \"Cox proportional hazards regression model\" ) library(survival) # model mod_coxph <- survival::coxph( formula = Surv(time, status) ~ age + sex + frailty(inst), data = lung ) ggcoefstats( x = mod_coxph, title = \"Proportional Hazards Regression Model\\nwith Frailty penalty function\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"f-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"F-statistic","title":"ggcoefstats","text":"omnibus ANOVA (aov) Note can also use function model selection. can try different models code see AIC BIC values change.","code":"library(ggplot2) # model mod_aov <- stats::aov(formula = rating ~ mpaa * genre, data = movies_long) ggcoefstats( x = mod_aov, effectsize.type = \"omega\", # changing the effect size estimate being displayed point.args = list(color = \"red\", size = 4, shape = 15), # changing the point geom package = \"dutchmasters\", # package from which color palette is to be taken palette = \"milkmaid\", # color palette for labels title = \"omnibus ANOVA\", # title for the plot exclude.intercept = TRUE ) + # further modification with the ggplot2 commands # note the order in which the labels are entered ggplot2::scale_y_discrete(labels = c(\"MPAA\", \"Genre\", \"Interaction term\")) + ggplot2::labs(x = \"effect size estimate (eta-squared)\", y = NULL) combine_plots( plotlist = list( # model 1 ggcoefstats( x = stats::aov(formula = rating ~ mpaa, data = movies_long), title = \"1. Only MPAA ratings\" ), # model 2 ggcoefstats( x = stats::aov(formula = rating ~ genre, data = movies_long), title = \"2. Only genre\" ), # model 3 ggcoefstats( x = stats::aov(formula = rating ~ mpaa + genre, data = movies_long), title = \"3. Additive effect of MPAA and genre\" ), # model 4 ggcoefstats( x = stats::aov(formula = rating ~ mpaa * genre, data = movies_long), title = \"4. Multiplicative effect of MPAA and genre\" ) ), annotation.args = list(title = \"Model selection using ggcoefstats\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"bayesian-models---no-statistic","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"Bayesian models - no statistic","title":"ggcoefstats","text":"","code":"library(BayesFactor) # one sample t-test mod1 <- ttestBF(mtcars$wt, mu = 3) # independent t-test mod2 <- ttestBF(formula = wt ~ am, data = mtcars) # paired t-test mod3 <- ttestBF(x = sleep$extra[1:10], y = sleep$extra[11:20], paired = TRUE) # correlation mod4 <- correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width) # contingency tabs (not supported) data(\"raceDolls\") mod5 <- contingencyTableBF( raceDolls, sampleType = \"indepMulti\", fixedMargin = \"cols\" ) # anova data(\"puzzles\") mod6 <- anovaBF( formula = RT ~ shape * color + ID, data = puzzles, whichRandom = \"ID\", whichModels = \"top\", progress = FALSE ) # regression-1 mod7 <- regressionBF(rating ~ ., data = attitude, progress = FALSE) # meta-analysis t <- c(-0.15, 2.39, 2.42, 2.43, -0.15, 2.39, 2.42, 2.43) N <- c(100, 150, 97, 99, 99, 97, 100, 150) mod8 <- meta.ttestBF(t, N, rscale = 1, nullInterval = c(0, Inf)) # proportion test mod9 <- proportionBF(y = 15, N = 25, p = 0.5) # list of plots combine_plots( plotlist = list( ggcoefstats(mod1, title = \"one sample t-test\"), ggcoefstats(mod2, title = \"independent t-test\"), ggcoefstats(mod3, title = \"paired t-test\"), ggcoefstats(mod4, title = \"correlation\"), ggcoefstats(mod5, title = \"contingency table\", effectsize.type = \"cramers_v\"), ggcoefstats(mod6, title = \"anova\"), ggcoefstats(mod7, title = \"regression-1\"), ggcoefstats(mod8, title = \"meta-analysis\"), ggcoefstats(mod9, title = \"proportion test\") ), annotation.args = list(title = \"Example from `{BayesFactor}` package\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"regression-models-with-list-outputs","dir":"Articles > Web_only","previous_headings":"Examples of supported models","what":"Regression models with list outputs","title":"ggcoefstats","text":"Note number regression models return object class list, case function fail. often can extract object interest list use plot regression coefficients.","code":"library(gamm4) # data dat <- gamSim(1, n = 400, scale = 2) # now add 20 level random effect `fac'... dat$fac <- fac <- as.factor(sample(1:20, 400, replace = TRUE)) dat$y <- dat$y + model.matrix(~ fac - 1) %*% rnorm(20) * .5 # model object br <- gamm4::gamm4( formula = y ~ s(x0) + x1 + s(x2), data = dat, random = ~ (1 | fac) ) # looking at the classes of the objects contained in the list purrr::map(br, class) combine_plots( plotlist = list( # first object plot (only parametric terms are shown) ggcoefstats( x = br$gam, title = \"generalized additive model (parametric terms)\", digits = 3 ), # second object plot ggcoefstats( x = br$mer, title = \"linear mixed-effects model\", digits = 3 ) ), plotgrid.args = list(nrow = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"meta-analysis","dir":"Articles > Web_only","previous_headings":"","what":"Meta-analysis","title":"ggcoefstats","text":"case estimates displaying come multiple studies, can also use function carry random-effects meta-analysis. data frame enter must contain minimum following three columns- term: column names/identifiers annotate study/effect estimate: column observed effect sizes outcomes std.error: column corresponding standard errors","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"parametric","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"parametric","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, bf.message = TRUE, meta.type = \"parametric\", title = \"parametric random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"robust","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"robust","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, meta.type = \"robust\", title = \"robust random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"bayesian","dir":"Articles > Web_only","previous_headings":"Meta-analysis","what":"Bayesian","title":"ggcoefstats","text":"","code":"library(metaplus) # renaming to what the function expects df <- dplyr::rename(mag, estimate = yi, std.error = sei, term = study) ggcoefstats( x = df, meta.analytic.effect = TRUE, meta.type = \"bayes\", title = \"Bayesian random-effects meta-analysis\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"data-frames","dir":"Articles > Web_only","previous_headings":"","what":"Data frames","title":"ggcoefstats","text":"Sometimes don’t model object custom data frame want display using function. data frame plotted, must contain columns named term (names predictors), estimate (corresponding estimates coefficients quantities interest). optional columns conf.low conf.high (confidence intervals), p.value. also specify type statistic relevant regression models (\"t\", \"z\", \"f\", \"chi\") case want display statistical labels. can also provide data frame containing relevant information additionally displaying labels statistical information.","code":"# let's create a data frame df_full <- tibble::tribble( ~term, ~statistic, ~estimate, ~std.error, ~p.value, ~df.error, \"study1\", 0.158, 0.0665, 0.778, 0.875, 5L, \"study2\", 1.33, 0.542, 0.280, 0.191, 10L, \"study3\", 1.24, 0.045, 0.030, 0.001, 12L, \"study4\", 0.156, 0.500, 0.708, 0.885, 8L, \"study5\", 0.33, 0.032, 0.280, 0.101, 2L, \"study6\", 1.04, 0.085, 0.030, 0.001, 3L ) ggcoefstats( x = df_full, meta.analytic.effect = TRUE, statistic = \"t\", package = \"LaCroixColoR\", palette = \"paired\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"non-plot-outputs","dir":"Articles > Web_only","previous_headings":"","what":"Non-plot outputs","title":"ggcoefstats","text":"function can also used extract outputs plot, although much preferable use underlying functions instead (parameters::model_parameters).","code":"# data DNase1 <- subset(DNase, Run == 1) # using a selfStart model nlmod <- stats::nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1) # data frames ggcoefstats(nlmod) %>% extract_stats() #> $subtitle_data #> NULL #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> # A tibble: 3 × 11 #> term estimate std.error conf.level conf.low conf.high statistic df.error #> #> 1 Asym 2.35 0.0782 0.95 2.18 2.51 30.0 13 #> 2 xmid 1.48 0.0814 0.95 1.31 1.66 18.2 13 #> 3 scal 1.04 0.0323 0.95 0.972 1.11 32.3 13 #> p.value conf.method expression #> #> 1 2.17e-13 Wald #> 2 1.22e-10 Wald #> 3 8.51e-14 Wald #> #> $glance_data #> # A tibble: 0 × 0 #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggcoefstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"not-supported","dir":"Articles > Web_only","previous_headings":"","what":"Not supported","title":"ggcoefstats","text":"vignette supposed give comprehensive account regression models supported ggcoefstats. list supported models keep expanding additional tidiers added parameters performance packages. Note models supported packages supported ggcoefstats(). particular, classes objects column estimate (e.g., kmeans, optim, muhaz, survdiff, zoo, etc.) supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggcoefstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"correlation-matrix-plot-with-ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"Correlation matrix plot with ggcorrmat()","title":"ggcorrmat","text":"first example, use gapminder dataset (available eponymous package CRAN) provides values life expectancy, Gross Domestic Product (GDP) per capita, population, every five years, 1952 2007, 142 countries collected Gapminder Foundation. Let’s look data- Let’s say interested studying correlation population country, average life expectancy, GDP per capita across countries year 2007. simplest way get correlation matrix stick defaults- plot can modified additional arguments- seen correlation matrix, although relationship population life expectancy worldwide, least 2007, strong positive relationship GDP, well-established indicator country’s economic performance. Given three variables, doesn’t look impressive. let’s work another example ggplot2 package: diamonds dataset. dataset contains prices attributes almost 54,000 diamonds. Let’s look data- Let’s see correlation matrix different attributes diamond price. can make number changes basic correlation matrix. example, since interested relationship price attributes, let’s make price column first column. seen , unsurprisingly, strongest predictor diamond price carat value, unit mass equal 200 mg. words, heavier diamond, expensive going .","code":"library(gapminder) library(dplyr) dplyr::glimpse(gapminder) #> Rows: 1,704 #> Columns: 6 #> $ country \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", \"Afghanistan\", … #> $ continent Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, … #> $ year 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, … #> $ lifeExp 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8… #> $ pop 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12… #> $ gdpPercap 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, … ## select data only from the year 2007 gapminder_2007 <- dplyr::filter(gapminder::gapminder, year == 2007) ## producing the correlation matrix ggcorrmat( data = gapminder_2007, ## data from which variable is to be taken cor.vars = lifeExp:gdpPercap ## specifying correlation matrix variables ) ggcorrmat( data = gapminder_2007, ## data from which variable is to be taken cor.vars = lifeExp:gdpPercap, ## specifying correlation matrix variables cor.vars.names = c( \"Life Expectancy\", \"population\", \"GDP (per capita)\" ), type = \"np\", ## which correlation coefficient is to be computed lab.col = \"red\", ## label color ggtheme = ggplot2::theme_light(), ## selected ggplot2 theme ## turn off default ggestatsplot theme overlay matrix.type = \"lower\", ## correlation matrix structure colors = NULL, ## turning off manual specification of colors palette = \"category10_d3\", ## choosing a color palette package = \"ggsci\", ## package to which color palette belongs title = \"Gapminder correlation matrix\", ## custom title subtitle = \"Source: Gapminder Foundation\" ## custom subtitle ) library(ggplot2) dplyr::glimpse(ggplot2::diamonds) #> Rows: 53,940 #> Columns: 10 #> $ carat 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, 0.23, 0.… #> $ cut Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver… #> $ color E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, J, J, I,… #> $ clarity SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI1, VS1, … #> $ depth 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64… #> $ table 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58… #> $ price 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34… #> $ x 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4.… #> $ y 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4.… #> $ z 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2.… ## let's use just 5% of the data to speed it up ggcorrmat( data = dplyr::sample_frac(ggplot2::diamonds, size = 0.05), cor.vars = c(carat, depth:z), ## note how the variables are getting selected cor.vars.names = c( \"carat\", \"total depth\", \"table\", \"price\", \"length (in mm)\", \"width (in mm)\", \"depth (in mm)\" ), ggcorrplot.args = list(outline.color = \"black\", hc.order = TRUE) ) ## let's use just 5% of the data to speed it up ggcorrmat( data = dplyr::sample_frac(ggplot2::diamonds, size = 0.05), cor.vars = c(price, carat, depth:table, x:z), ## note how the variables are getting selected cor.vars.names = c( \"price\", \"carat\", \"total depth\", \"table\", \"length (in mm)\", \"width (in mm)\", \"depth (in mm)\" ), type = \"np\", title = \"Relationship between diamond attributes and price\", subtitle = \"Dataset: Diamonds from ggplot2 package\", colors = c(\"#0072B2\", \"#D55E00\", \"#CC79A7\"), pch = \"square cross\", ## additional aesthetic arguments passed to `ggcorrmat()` ggcorrplot.args = list( lab_col = \"yellow\", lab_size = 6, tl.srt = 90, pch.col = \"white\", pch.cex = 14 ) ) + ## modification outside `{ggstatsplot}` using `{ggplot2}` functions ggplot2::theme( axis.text.x = ggplot2::element_text( margin = ggplot2::margin(t = 0.15, r = 0.15, b = 0.15, l = 0.15, unit = \"cm\") ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"grouped-analysis-with-grouped_ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggcorrmat","title":"ggcorrmat","text":"want analysis separately quality diamond cut (Fair, Good, Good, Premium, Ideal)? ggstatsplot provides special helper function instances: grouped_ggcorrmat(). merely wrapper function around combine_plots(). applies ggcorrmat() across levels specified grouping variable combines list individual plots single plot. Note function also makes easy run correlation matrix across different levels factor/grouping variable.","code":"grouped_ggcorrmat( ## arguments relevant for `ggcorrmat()` data = ggplot2::diamonds, cor.vars = c(price, carat, depth), grouping.var = cut, ## arguments relevant for `combine_plots()` plotgrid.args = list(nrow = 3), annotation.args = list( tag_levels = \"a\", title = \"Relationship between diamond attributes and price across cut\", caption = \"Dataset: Diamonds from ggplot2 package\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"data-frame","dir":"Articles > Web_only","previous_headings":"","what":"Data frame","title":"ggcorrmat","text":"want data frame (grouped) correlation matrix, use correlation::correlation() instead. can also grouped analysis used output dplyr::group_by().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"grouped-analysis-with-ggcorrmat-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggcorrmat() + {purrr}","title":"ggcorrmat","text":"Although grouped_ function good quickly exploring data, reduces flexibility function can used. common parameters used applied plots corresponding levels grouping variable way customize arguments different levels grouping variable. see can done using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggcorrmat","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggcorrmat","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"distribution-of-a-sample-with-ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"Distribution of a sample with ggdotplotstats","title":"ggdotplotstats","text":"Let’s begin simple example ggplot2 package (ggplot2::mpg), subset fuel economy data EPA makes available http://fueleconomy.gov. Let’s say want visualize distribution mileage car manufacturer.","code":"## looking at the structure of the data using glimpse dplyr::glimpse(ggplot2::mpg) #> Rows: 234 #> Columns: 11 #> $ manufacturer \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"audi\", \"… #> $ model \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4\", \"a4 quattro\", \"… #> $ displ 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, 2.… #> $ year 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 200… #> $ cyl 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, … #> $ trans \"auto(l5)\", \"manual(m5)\", \"manual(m6)\", \"auto(av)\", \"auto… #> $ drv \"f\", \"f\", \"f\", \"f\", \"f\", \"f\", \"f\", \"4\", \"4\", \"4\", \"4\", \"4… #> $ cty 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17, 1… #> $ hwy 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25, 2… #> $ fl \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p\", \"p… #> $ class \"compact\", \"compact\", \"compact\", \"compact\", \"compact\", \"c… ## removing factor level with very few no. of observations df <- dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")) ## creating a vector of colors using `paletteer` package paletter_vector <- paletteer::paletteer_d( palette = \"palettetown::venusaur\", n = nlevels(as.factor(df$manufacturer)), type = \"discrete\" ) ggdotplotstats( data = df, x = cty, y = manufacturer, xlab = \"city miles per gallon\", ylab = \"car manufacturer\", test.value = 15.5, point.args = list( shape = 16, color = paletter_vector, size = 5 ), title = \"Distribution of mileage of cars\", ggtheme = ggplot2::theme_dark() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"grouped-analysis-with-grouped_ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggdotplotstats","title":"ggdotplotstats","text":"want analysis separately different engines different numbers cylinders? ggstatsplot provides special helper function instances: grouped_ggdotplotstats. merely wrapper function around combine_plots. applies ggdotplotstats across levels specified grouping variable combines individual plots single plot. Let’s see can use function apply ggdotplotstats accomplish task.","code":"## removing factor level with very few no. of observations df <- dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")) grouped_ggdotplotstats( ## arguments relevant for ggdotplotstats data = df, grouping.var = cyl, ## grouping variable x = cty, y = manufacturer, xlab = \"city miles per gallon\", ylab = \"car manufacturer\", type = \"bayes\", ## Bayesian test test.value = 15.5, ## arguments relevant for `combine_plots` annotation.args = list(title = \"Fuel economy data\"), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"grouped-analysis-with-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with {purrr}","title":"ggdotplotstats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate test.value argument gender, possible grouped_ggdotplotstats. cases like , run separate kinds tests (robust , parametric , Bayesian levels group) better use purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggdotplotstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggdotplotstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Student’s t-test revealed , across 5 experiments, speed light significantly different posited speed. effect size (g=1.22)(g = 1.22) large, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.46 times probable alternative hypothesis compared null hypothesis. can considered moderate evidence (Jeffreys, 1961) favor alternative hypothesis.","code":"ggdotplotstats(morley, Speed, Expt, test.value = 800)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggdotplotstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"statistical-analysis-with-gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"Statistical analysis with gghistostats","title":"gghistostats","text":"Let’s begin simple example psych package (psych::sat.act), sample 700 self-reported scores SAT Verbal, SAT Quantitative ACT tests. ACT composite scores may range 1 - 36. National norms mean 20. get simple histogram statistics special information. gghistostats default choose binwidth max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data since histograms sensitive binwidth. Let’s display national norms (labeled “Test”) test hypothesis sample mean national population mean 20 using parametric one sample t-test (type = \"p\"). gghistostats computed Bayes Factors quantify likelihood research (BF10) null hypothesis (BF01). current example, Bayes Factor value provides strong evidence (Kass Rafferty, 1995) favor research hypothesis: ACT scores much higher national average. log(Bayes factor) 492.5 means odds 7.54e+213:1 sample different.","code":"## loading needed libraries library(psych) library(dplyr) ## looking at the structure of the data using glimpse dplyr::glimpse(psych::sat.act) #> Rows: 700 #> Columns: 6 #> $ gender 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, … #> $ education 3, 3, 3, 4, 2, 5, 5, 3, 4, 5, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, … #> $ age 19, 23, 20, 27, 33, 26, 30, 19, 23, 40, 23, 34, 32, 41, 20, … #> $ ACT 24, 35, 21, 26, 31, 28, 36, 22, 22, 35, 32, 29, 21, 35, 27, … #> $ SATV 500, 600, 480, 550, 600, 640, 610, 520, 400, 730, 760, 710, … #> $ SATQ 500, 500, 470, 520, 550, 640, 500, 560, 600, 800, 710, 600, … gghistostats( data = psych::sat.act, ## data from which variable is to be taken x = ACT, ## numeric variable xlab = \"ACT Score\", ## x-axis label title = \"Distribution of ACT Scores\", ## title for the plot test.value = 20, ## test value caption = \"Data courtesy of: SAPA project (https://sapa-project.org)\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"grouped-analysis-with-grouped_gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_gghistostats","title":"gghistostats","text":"want analysis separately gender? ggstatsplot provides special helper function instances: grouped_gghistostats. merely wrapper function around combine_plots. applies gghistostats across levels specified grouping variable combines individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s see can use function apply gghistostats accomplish task. can seen plots, mean value much higher national norm. Additionally, see benefits plotting data separately gender. can see differences distributions.","code":"grouped_gghistostats( ## arguments relevant for gghistostats data = psych::sat.act, x = ACT, ## same outcome variable xlab = \"ACT Score\", grouping.var = gender, ## grouping variable males = 1, females = 2 type = \"robust\", ## robust test: one-sample percentile bootstrap test.value = 20, ## test value against which sample mean is to be compared centrality.line.args = list(color = \"#D55E00\", linetype = \"dashed\"), # ggtheme = ggthemes::theme_stata(), ## changing default theme ## turn off ggstatsplot theme layer ## arguments relevant for combine_plots annotation.args = list( title = \"Distribution of ACT scores across genders\", caption = \"Data courtesy of: SAPA project (https://sapa-project.org)\" ), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"grouped-analysis-with-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with {purrr}","title":"gghistostats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate test.value argument gender, possible grouped_gghistostats. cases like , run separate kinds tests (robust , parametric , Bayesian levels group) better use purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"gghistostats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"gghistostats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Student’s t-test revealed , across 31 felled black cherry trees, although height higher expected height 75 ft., effect statistically significant. effect size (g=0.15)(g = 0.15) small, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.67 times probable null hypothesis compared alternative hypothesis. can considered moderate evidence (Jeffreys, 1961) favor null hypothesis.","code":"gghistostats(trees, Height, test.value = 75)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"gghistostats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"introduction-to-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Introduction to ggpiestats","title":"ggpiestats","text":"function ggpiestats can used quick data exploration /prepare publication-ready pie charts summarize statistical relationship(s) among one categorical variables. see examples use function vignette. begin , instances want use ggpiestats- check proportion observations matches hypothesized proportion, typically known “Goodness Fit” test see frequency distribution two categorical variables independent using contingency table analysis check proportion observations level categorical variable equal Note: following demo uses pipe operator (%>%), familiar operator, good explanation: http://r4ds..co.nz/pipes.html. ggpiestats works data organized data frames tibbles. work data structures like base-R tables matrices. can operate data frames organized one row per observation data frames one column containing counts. vignette provides examples (see examples ). help demonstrate ggpiestats can used categorical (also known nominal) data, modified version original Titanic dataset (datasets library) provided ggstatsplot package name Titanic_full. Titanic Passenger Survival Dataset provides information “fate passengers fatal maiden voyage ocean liner Titanic, including economic status (class), sex, age, survival.” Let’s look structure .","code":"# looking at the original data in tabular format dplyr::glimpse(Titanic) #> 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ... #> - attr(*, \"dimnames\")=List of 4 #> ..$ Class : chr [1:4] \"1st\" \"2nd\" \"3rd\" \"Crew\" #> ..$ Sex : chr [1:2] \"Male\" \"Female\" #> ..$ Age : chr [1:2] \"Child\" \"Adult\" #> ..$ Survived: chr [1:2] \"No\" \"Yes\" # looking at the dataset as a tibble or data frame dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"goodness-of-fit-with-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Goodness of Fit with ggpiestats","title":"ggpiestats","text":"simplest use case ggpiestats want display information one categorical nominal variable. part display plot, may also choose execute chi-squared goodness fit test see whether proportions (percentages) categories single variable appear line hypothesis model. start simple expand, let’s say ’d like display piechart percentages passengers survive. initial hypothesis different flipping coin. People 50/50 chance surviving. Note: equal proportions per category default, e.g. 50/50, can specify hypothesized ratio like ratio hypothesis 80% died 20% survived add ratio = c(.80,.20) entered code.","code":"ggpiestats( data = Titanic_full, x = Survived, title = \"Passenger survival on the Titanic\", caption = \"Source: Titanic survival dataset\", legend.title = \"Survived?\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"independence-or-association-with-ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Independence (or association) with ggpiestats","title":"ggpiestats","text":"Let’s next investigate whether passenger’s gender independent , associated , gender. test whether proportion people survived different sexes using ggpiestats. plot clearly shows survival rates different males females. Pearson’s χ2\\chi^2-test independence significant given large sample size. Additionally, females males, survival rates significantly different 50% indicated goodness fit test gender.","code":"ggpiestats( data = Titanic_full, x = Survived, y = Sex ) + # further modification with `{ggplot2}` commands ggplot2::theme( plot.title = ggplot2::element_text( color = \"black\", size = 14, hjust = 0 ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"grouped-analysis-with-grouped_ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggpiestats","title":"ggpiestats","text":"want analysis gender also factor passenger’s age (Age)? information classifies passengers Child Adult, perhaps makes difference survival rate? ggstatsplot provides special helper function instances: grouped_ggpiestats. convenient wrapper function around combine_plots. applies ggpiestats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. resulting pie charts statistics make story clear. adults gender much matters. Women survived much higher rates men. children gender significantly associated survival male female children survival rate significantly different 50/50.","code":"grouped_ggpiestats( # arguments relevant for `ggpiestats()` data = Titanic_full, x = Survived, y = Sex, grouping.var = Age, digits.perc = 1, package = \"ggsci\", palette = \"category10_d3\", # arguments relevant for `combine_plots()` title.text = \"Passenger survival on the Titanic by gender and age\", caption.text = \"Asterisks denote results from proportion tests; \\n***: p < 0.001, ns: non-significant\", plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"grouped-analysis-with-ggpiestats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggpiestats + {purrr}","title":"ggpiestats","text":"Although grouped_ggpiestats provides quick way explore data, leaves much desired. example, may want add different captions, titles, themes, palettes level grouping variable, etc. cases like , better use purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"working-with-data-organized-by-counts","dir":"Articles > Web_only","previous_headings":"","what":"Working with data organized by counts","title":"ggpiestats","text":"ggpiestats can also work data frame containing counts (aka tabled data), .e., row doesn’t correspond unique observation. example, consider following notional fishing data frame containing data two boats (B) number different types fish caught months February March. data frame, row corresponds unique combination Boat Month. data organized way, make slightly different call ggpiestats() function: use counts argument. want investigate relationship type fish month (test independence), command : results support hypothesis type fish caught related month ’re fishing. χ2\\chi^2 independence test results top plot. February, catch significantly Cod hypothesize equal distribution. Whereas, March, results indicate ’s strong evidence distribution isn’t equal.","code":"# (this is completely fictional; I don't know first thing about fishing!) fishing <- tibble::as_tibble(data.frame( Boat = c(rep(\"B\", 4), rep(\"A\", 4), rep(\"A\", 4), rep(\"B\", 4)), Month = c(rep(\"February\", 2), rep(\"March\", 2), rep(\"February\", 2), rep(\"March\", 2)), Fish = c( \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\", \"Bass\", \"Catfish\", \"Cod\", \"Haddock\", \"Cod\", \"Haddock\", \"Bass\", \"Catfish\" ), SumOfCaught = c(25, 20, 35, 40, 40, 25, 30, 42, 40, 30, 33, 26, 100, 30, 20, 20) )) fishing #> # A tibble: 16 × 4 #> Boat Month Fish SumOfCaught #> #> 1 B February Bass 25 #> 2 B February Catfish 20 #> 3 B March Cod 35 #> 4 B March Haddock 40 #> 5 A February Cod 40 #> 6 A February Haddock 25 #> 7 A March Bass 30 #> 8 A March Catfish 42 #> 9 A February Bass 40 #> 10 A February Catfish 30 #> 11 A March Cod 33 #> 12 A March Haddock 26 #> 13 B February Cod 100 #> 14 B February Haddock 30 #> 15 B March Bass 20 #> 16 B March Catfish 20 ggpiestats( data = fishing, x = Fish, y = Month, counts = SumOfCaught, label = \"both\", package = \"ggsci\", palette = \"default_jama\", title = \"Type fish caught by month\", caption = \"Source: completely made up\", legend.title = \"Type fish caught: \" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"within-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Within-subjects designs","title":"ggpiestats","text":"Let’s imagine ’re conducting clinical trials new imaginary wonder drug. 134 subjects entering trial. enter healthy (n = 96), enter trial already sick (n = 38). receive treatment intervention. check back month see healthy sick. classic pre/post experimental design. ’re interested seeing change groupings. case within-subjects designs, can set paired = TRUE, display results McNemar test subtitle. (Note: forget set paired = TRUE, results inaccurate.) results bode well experimental wonder drug. 96 started healthy 4% sick month. Ideally, hoped zero reality seldom perfect. side 38 started sick number reduced just 13 34% marked improvement.","code":"# create imaginary data clinical_trial <- tibble::tribble( ~SickBefore, ~SickAfter, ~Counts, \"No\", \"Yes\", 4, \"Yes\", \"No\", 25, \"Yes\", \"Yes\", 13, \"No\", \"No\", 92 ) ggpiestats( data = clinical_trial, x = SickAfter, y = SickBefore, counts = Counts, paired = TRUE, label = \"both\", title = \"Results from imaginary clinical trial\", package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggpiestats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggpiestats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s χ2\\chi^2-test independence revealed , across 32 automobiles, showed significant association transmission engine number cylinders. Bayes Factor analysis revealed data 16.78 times probable alternative hypothesis compared null hypothesis. can considered strong evidence (Jeffreys, 1961) favor alternative hypothesis. Similar reporting style can followed function performs one-sample goodness--fit test instead χ2\\chi^2-test. holds true ggbarstats.","code":"ggpiestats(mtcars, am, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggpiestats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"correlation-plot-with-ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"Correlation plot with ggscatterstats","title":"ggscatterstats","text":"illustrate function can used, rely ggplot2movies dataset. dataset provides information movies scraped IMDB. Specifically, using cleaned version dataset included ggstatsplot package . Now clean dataset, can start asking interesting questions. example, let’s see average IMDB rating movie relationship budget. Additionally, let’s also see movies high budget low IMDB rating labeling data points. reduce processing time, let’s work 30% dataset. indeed small, significant, positive correlation amount money studio invests movie ratings given audiences.","code":"## see the selected data (we have data from 1813 movies) dplyr::glimpse(movies_long) #> Rows: 1,579 #> Columns: 8 #> $ title \"Shawshank Redemption, The\", \"Lord of the Rings: The Return of … #> $ year 1994, 2003, 2001, 2002, 1994, 1993, 1977, 1980, 1968, 2002, 196… #> $ length 142, 251, 208, 223, 168, 195, 125, 129, 158, 135, 93, 113, 108,… #> $ budget 25.0, 94.0, 93.0, 94.0, 8.0, 25.0, 11.0, 18.0, 5.0, 3.3, 1.8, 5… #> $ rating 9.1, 9.0, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.7, 8.7, 8.7, 8.7, 8.6… #> $ votes 149494, 103631, 157608, 114797, 132745, 97667, 134640, 103706, … #> $ mpaa R, PG-13, PG-13, PG-13, R, R, PG, PG, PG-13, R, PG, R, R, R, R,… #> $ genre Drama, Action, Action, Action, Drama, Drama, Action, Action, Dr… ggscatterstats( data = movies_long, ## data frame from which variables are taken x = budget, ## predictor/independent variable y = rating, ## dependent variable xlab = \"Budget (in millions of US dollars)\", ## label for the x-axis ylab = \"Rating on IMDB\", ## label for the y-axis label.var = title, ## variable to use for labeling data points label.expression = rating < 5 & budget > 100, ## expression for deciding which points to label point.label.args = list(alpha = 0.7, size = 4, color = \"grey50\"), xfill = \"#CC79A7\", ## fill for marginals on the x-axis yfill = \"#009E73\", ## fill for marginals on the y-axis title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"grouped-analysis-with-grouped_ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggscatterstats","title":"ggscatterstats","text":"want analysis analysis movies different MPAA (Motion Picture Association America) film ratings (NC-17, PG, PG-13, R)? ggstatsplot provides special helper function instances: grouped_ggstatsplot. merely wrapper function around combine_plots. applies ggstatsplot across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s see can use function apply ggscatterstats MPAA ratings. Also, let’s run robust test time. seen plot, analysis revealed something interesting: relationship found budget IMDB rating holds PG-13 R-rated movies.","code":"grouped_ggscatterstats( ## arguments relevant for ggscatterstats data = movies_long, x = budget, y = rating, grouping.var = mpaa, label.var = title, label.expression = rating < 5 & budget > 80, type = \"r\", # ggtheme = ggthemes::theme_tufte(), ## arguments relevant for combine_plots annotation.args = list( title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" ), plotgrid.args = list(nrow = 3, ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"grouped-analysis-with-ggscatterstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggscatterstats + {purrr}","title":"ggscatterstats","text":"Although quick dirty way explore large amount data minimal effort, come important limitation: reduced flexibility. example, wanted add, let’s say, separate type marginal distribution plot MPAA rating wanted use different types correlations across different levels MPAA ratings (NC-17 6 movies, robust correlation good idea), possible. can easily done using purrr. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggscatterstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggscatterstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Pearson’s correlation test revealed , across 32 cars, measure acceleration (1/4 mile time; qsec) positively correlated rear axle ratio (drat), effect statistically significant. effect size (r=0.09)(r = 0.09) small, per Cohen’s (1988) conventions. Bayes Factor analysis revealed data 3.32 times probable null hypothesis compared alternative hypothesis. can considered moderate evidence (Jeffreys, 1961) favor null hypothesis (absence correlation two variables).","code":"ggscatterstats(mtcars, qsec, drat)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggscatterstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"comparisons-between-groups-with-ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"Comparisons between groups with ggwithinstats","title":"ggwithinstats","text":"illustrate function can used, use bugs dataset throughout vignette. data set, “Bugs”, provides extent men women want kill arthropods vary freighteningness (low, high) disgustingness (low, high). participant rates attitudes towards anthropods. Subset data reported Ryan et al. (2013). Note repeated measures design participant gave four different ratings across four different conditions (LDLF, LDHF, HDLF, HDHF). Suppose first thing want inspect distribution desire kill across conditions (disregarding factorial structure experiment). also want know mean differences desire across conditions statistically significant. simplest form function call - Note: function automatically decides whether dependent samples test preferred (2 groups) ANOVA (3 groups). based number levels grouping variable. output function ggplot object means can modified ggplot2 functions. can seen plot, function default returns Bayes Factor test. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayes Factor values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF10)log_{e}(BF_{01}) = - log_{e}(BF_{10})). can make output much aesthetically pleasing well informative making use many optional parameters ggwithinstats. ’ll add title caption, better x y axis labels. can change overall theme well color palette use. can appreciated effect size (partial eta squared) 0.18, small differences mean desire kill across conditions. Importantly, plot also helps us appreciate distributions within given condition. far used classic parametric test, can also use available options: type (test) argument also accepts following abbreviations: \"p\" (parametric), \"np\" (nonparametric), \"r\" (robust), \"bf\" (Bayes Factor). Let’s use combine_plots function make one plot four separate plots demonstrates options. Let’s compare desire kill bugs low versus high disgust conditions see much difference whether bug disgusting-looking makes desire kill bug. generate plots one one use combine_plots merge one plot common labeling. possible, necessarily recommended, make plot different colors themes. example,","code":"ggwithinstats( data = bugs_long, x = condition, y = desire ) ggwithinstats( data = bugs_long, x = condition, y = desire, type = \"nonparametric\", ## type of statistical test xlab = \"Condition\", ## label for the x-axis ylab = \"Desire to kill an artrhopod\", ## label for the y-axis package = \"yarrr\", ## package from which color palette is to be taken palette = \"info2\", ## choosing a different color palette title = \"Comparison of desire to kill bugs\", caption = \"Source: Ryan et al., 2013\" ) + ## modifying the plot further ggplot2::scale_y_continuous( limits = c(0, 10), breaks = seq(from = 0, to = 10, by = 1) ) ## selecting subset of the data df_disgust <- dplyr::filter(bugs_long, condition %in% c(\"LDHF\", \"HDHF\")) ## parametric t-test p1 <- ggwithinstats( data = df_disgust, x = condition, y = desire, type = \"p\", effsize.type = \"d\", conf.level = 0.99, title = \"Parametric test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## Mann-Whitney U test (nonparametric test) p2 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"np\", conf.level = 0.99, title = \"Non-parametric Test\", package = \"ggsci\", palette = \"uniform_startrek\" ) ## robust t-test p3 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"r\", conf.level = 0.99, title = \"Robust Test\", package = \"wesanderson\", palette = \"Royal2\" ) ## Bayes Factor for parametric t-test p4 <- ggwithinstats( data = df_disgust, x = condition, y = desire, xlab = \"Condition\", ylab = \"Desire to kill bugs\", type = \"bayes\", title = \"Bayesian Test\", package = \"ggsci\", palette = \"nrc_npg\" ) ## combining the individual plots into a single plot combine_plots( plotlist = list(p1, p2, p3, p4), plotgrid.args = list(nrow = 2), annotation.args = list( title = \"Effect of disgust on desire to kill bugs \", caption = \"Source: Bugs dataset from `jmv` R package\" ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"grouped-analysis-with-grouped_ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with grouped_ggwithinstats","title":"ggwithinstats","text":"want carry analysis region (gender)? ggstatsplot provides special helper function instances: grouped_ggwithinstats. merely wrapper function around combine_plots. applies ggwithinstats across levels specified grouping variable combines list individual plots single plot. Note grouping variable can anything: conditions given study, groups study sample, different studies, etc. Let’s focus two regions years: 1967, 1987, 2007. Also, let’s carry pairwise comparisons see differences every pair continents.","code":"grouped_ggwithinstats( ## arguments relevant for ggwithinstats data = bugs_long, x = condition, y = desire, grouping.var = gender, xlab = \"Continent\", ylab = \"Desire to kill bugs\", type = \"nonparametric\", ## type of test pairwise.display = \"significant\", ## display only significant pairwise comparisons p.adjust.method = \"BH\", ## adjust p-values for multiple tests using this method # ggtheme = ggthemes::theme_tufte(), package = \"ggsci\", palette = \"default_jco\", digits = 3, ## arguments relevant for combine_plots annotation.args = list(title = \"Desire to kill bugs across genders\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"grouped-analysis-with-ggwithinstats-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Grouped analysis with ggwithinstats + {purrr}","title":"ggwithinstats","text":"Although grouping function provides quick way explore data, leaves much desired. example, type test theme applied genders, maybe want change different genders, maybe want gave different effect sizes different years. type customization different levels grouping variable possible grouped_ggwithinstats, can easily achieved using purrr package. See associated vignette : https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"between-subjects-designs","dir":"Articles > Web_only","previous_headings":"","what":"Between-subjects designs","title":"ggwithinstats","text":"independent measures designs, ggbetweenstats function can used: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"summary-of-graphics-and-tests","dir":"Articles > Web_only","previous_headings":"","what":"Summary of graphics and tests","title":"ggwithinstats","text":"Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"reporting","dir":"Articles > Web_only","previous_headings":"","what":"Reporting","title":"ggwithinstats","text":"wish include statistical analysis results publication/report, ideal reporting practice hybrid two approaches: ggstatsplot approach, plot contains visual numerical summaries statistical model, standard narrative approach, provides interpretive context reported statistics. example, let’s see following example: narrative context (assuming type = \"parametric\") can complement plot either figure caption main text- Fisher’s repeated measures one-way ANOVA revealed , across 22 friends taste three wines, statistically significant difference across persons preference wine. effect size (ωp=0.02)(\\omega_{p} = 0.02) medium, per Field’s (2013) conventions. Bayes Factor analysis revealed data 8.25 times probable alternative hypothesis compared null hypothesis. can considered moderate evidence (Jeffreys, 1961) favor alternative hypothesis. global effect carried post hoc pairwise t-tests, revealed Wine C preferred across participants least desirable compared Wines B. Similar reporting style can followed function performs t-test instead one-way ANOVA.","code":"library(WRS2) # for data ggwithinstats(WineTasting, Wine, Taste)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"ggwithinstats","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"introduction","dir":"Articles > Web_only","previous_headings":"","what":"Introduction","title":"Pairwise comparisons with `{ggstatsplot}`","text":"Pairwise comparisons ggstatsplot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"summary-of-types-of-statistical-analyses","dir":"Articles > Web_only","previous_headings":"","what":"Summary of types of statistical analyses","title":"Pairwise comparisons with `{ggstatsplot}`","text":"Following table contains brief summary currently supported pairwise comparison tests-","code":""},{"path":[]},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"data-frame-outputs","dir":"Articles > Web_only","previous_headings":"","what":"Data frame outputs","title":"Pairwise comparisons with `{ggstatsplot}`","text":"See data frame outputs .","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"example-1-between-subjects","dir":"Articles > Web_only","previous_headings":"Using pairwise_comparisons() with ggsignif","what":"Example-1: between-subjects","title":"Pairwise comparisons with `{ggstatsplot}`","text":"","code":"library(ggplot2) library(ggsignif) ## converting to factor mtcars$cyl <- as.factor(mtcars$cyl) ## creating a basic plot p <- ggplot(mtcars, aes(cyl, wt)) + geom_boxplot() ## using `pairwise_comparisons()` package to create a data frame with results df <- pairwise_comparisons(mtcars, cyl, wt) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) df #> # A tibble: 3 × 10 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 5.39 0.00831 two.sided q Holm #> 2 4 8 9.11 0.0000124 two.sided q Holm #> 3 6 8 5.12 0.00831 two.sided q Holm #> test expression groups #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell ## using `geom_signif` to display results ## (note that you can choose not to display all comparisons) p + ggsignif::geom_signif( comparisons = list(df$groups[[1]]), annotations = as.character(df$expression)[[1]], test = NULL, na.rm = TRUE, parse = TRUE )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html","id":"example-2-within-subjects","dir":"Articles > Web_only","previous_headings":"Using pairwise_comparisons() with ggsignif","what":"Example-2: within-subjects","title":"Pairwise comparisons with `{ggstatsplot}`","text":"","code":"library(ggplot2) library(ggsignif) ## creating a basic plot p <- ggplot(WRS2::WineTasting, aes(Wine, Taste)) + geom_boxplot() ## using `pairwise_comparisons()` package to create a data frame with results df <- pairwise_comparisons( WRS2::WineTasting, Wine, Taste, subject.id = Taster, type = \"bayes\", paired = TRUE ) %>% dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>% dplyr::arrange(group1) df #> # A tibble: 3 × 19 #> group1 group2 term effectsize estimate conf.level conf.low #> #> 1 Wine A Wine B Difference Bayesian t-test 0.00721 0.95 -0.0418 #> 2 Wine A Wine C Difference Bayesian t-test 0.0755 0.95 0.0127 #> 3 Wine B Wine C Difference Bayesian t-test 0.0693 0.95 0.0303 #> conf.high pd prior.distribution prior.location prior.scale bf10 #> #> 1 0.0562 0.624 cauchy 0 0.707 0.235 #> 2 0.140 0.990 cauchy 0 0.707 3.71 #> 3 0.110 1.00 cauchy 0 0.707 50.5 #> conf.method log_e_bf10 n.obs expression test groups #> #> 1 ETI -1.45 22 Student's t #> 2 ETI 1.31 22 Student's t #> 3 ETI 3.92 22 Student's t ## using `geom_signif` to display results p + ggsignif::geom_signif( comparisons = df$groups, map_signif_level = TRUE, tip_length = 0.01, y_position = c(6.5, 6.65, 6.8), annotations = as.character(df$expression), test = NULL, na.rm = TRUE, parse = TRUE )"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"graphical-perception","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Graphical perception","title":"Graphic design and statistical reporting principles","text":"Graphical perception involves visual decoding encoded information graphs. ggstatsplot incorporates paradigm proposed ((Cleveland, 1985), Chapter 4) facilitate making visual judgments quantitative information effortless almost instantaneous. Based experiments, Cleveland proposes ten elementary graphical-perception tasks perform visually decode quantitative information graphs (organized least accurate; (Cleveland, 1985), p.254)- Position along common scale Position along identical, non-aligned scales Length Angle (Slope) Area Volume Color hue key principle Cleveland’s paradigm data display - “encode data graph visual decoding involves [graphical-perception] tasks high ordering possible.” example, decoding data point values ggbetweenstats requires position judgments along common scale: Note assessing differences mean values groups made easier help data points along common scale (Y-axis) labels. instances ggstatsplot diverges recommendations made Cleveland’s paradigm: categorical/nominal data, ggstatsplot uses pie charts rely angle judgments, less accurate (compared bar graphs, e.g., require position judgments). shortcoming assuaged degree using plenty labels describe percentages slices. makes angle judgment unnecessary pre-vacates concerns inaccurate judgments percentages. Additionally, also provides alternative function ggpiestats working categorical variables: ggbarstats. Pie charts don’t follow Cleveland’s paradigm data display rely less accurate angle judgments. ggstatsplot sidesteps issue always labelling percentages pie slices, makes angle judgments unnecessary. Cleveland’s paradigm also emphasizes superposition data better juxtaposition ((Cleveland, 1985), p.201) allows incisive comparison values different parts dataset. recommendation violated grouped_ variants function. Note range Y-axes longer across juxtaposed subplots visually comparing data becomes difficult. hand, superposed plot, data range coloring different parts makes visual discrimination different components data, comparison, easier. goal grouped_ variants functions show different aspects data also run statistical tests showing detailed results aspects data superposed plot difficult. Therefore, compromise ggstatsplot comfortable , least produce plots quick exploration different aspects data. Comparing different aspects data much accurate () plot, recommended Cleveland’s paradigm, () plot, implemented ggstatsplot package. displaying detailed results statistical tests difficult superposed plot. grouped_ plots follow Shrink Principle ((Tufte, 2001), p.166-7) high-information graphics, dictates data density size data matrix can maximized exploit maximum resolution available data-display technology. Given large maximum resolution afforded computer monitors today, saving grouped_ plots appropriate resolution ensures loss legibility reduced graphics area.","code":"ggbetweenstats( data = dplyr::filter( movies_long, genre %in% c(\"Action\", \"Action Comedy\", \"Action Drama\", \"Comedy\") ), x = genre, y = rating, title = \"IMDB rating by film genre\", xlab = \"Genre\", ylab = \"IMDB rating (average)\" ) ggpiestats( data = movies_long, x = genre, y = mpaa, title = \"Distribution of MPAA ratings by film genre\", legend.title = \"layout\" ) library(ggplot2) ## creating a smaller data frame df <- dplyr::filter(movies_long, genre %in% c(\"Comedy\", \"Drama\")) combine_plots( plotlist = list( # superposition ggplot(data = df, mapping = aes(x = length, y = rating, color = genre)) + geom_jitter(size = 3, alpha = 0.5) + geom_smooth(method = \"lm\") + labs(title = \"superposition (recommended in Cleveland's paradigm)\") + theme_ggstatsplot(), # juxtaposition grouped_ggscatterstats( data = df, x = length, y = rating, grouping.var = genre, marginal = FALSE, annotation.args = list(title = \"juxtaposition (`{ggstatsplot}` implementation in `grouped_` functions)\") ) ), ## combine for comparison annotation.args = list(title = \"Two ways to compare different aspects of data\"), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"graphical-excellence","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Graphical excellence","title":"Graphic design and statistical reporting principles","text":"Graphical excellence consists communicating complex ideas clarity way viewer understands greatest number ideas short amount time quoting data context. package follows principles graphical integrity (Tufte, 2001): physical representation numbers proportional numerical quantities represent. plot show means (ggbetweenstats) percentages (ggpiestats) proportional vertical distance area, respectively). important events data clear, detailed, thorough labeling plot shows ggbetweenstats labels means, sample size information, outliers, pairwise comparisons; can appreciated ggpiestats gghistostats plots. Note data labels data region designed way don’t interfere ability assess overall pattern data ((Cleveland, 1985); p.44-45). achieved using ggrepel package place labels way reduces visual prominence. None plots design variation (e.g., abrupt change scales) surface graphic can lead false impression variation data. number information-carrying dimensions never exceed number dimensions data (e.g., using area show one-dimensional data). plots designed chartjunk (like moiré vibrations, fake perspective, dark grid lines, etc.) ((Tufte, 2001), Chapter 5). instances ggstatsplot graphs don’t follow principles clean graphics, formulated Tufte theory data graphics ((Tufte, 2001), Chapter 4). theory four key principles: else show data. Maximize data-ink ratio. Erase non-data-ink. Erase redundant data-ink, within reason. particular, default plots ggstatsplot can sometimes violate one principles 2-4. According principles, every bit ink reason inclusion graphic convey new information viewer. , ink removed. One instance bilateral symmetry data measures. example, figure , can see box violin plots mirrored, consumes twice space graphic without adding new information. redundancy tolerated sake beauty symmetrical shapes can bring graphic. Even Tufte admits efficiency one consideration design statistical graphics ((Tufte, 2001), p. 137). Additionally, principles formulated era computer graphics yet revolutionize ease graphics produced thus concerns minimizing data-ink easier production graphics relevant .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"statistical-variation","dir":"Articles > Web_only","previous_headings":"Graphic design principles","what":"Statistical variation","title":"Graphic design and statistical reporting principles","text":"One important functions plot show variation data, comes two forms: Measurement noise: ggstatsplot, actual variation measurements shown plotting combination (jittered) raw data points boxplot laid top histogram. None plots, empirical distribution data concerned, show sample standard deviation poor conveying information limits sample presence outliers ((Cleveland, 1985), p.220). Distribution variable shown using gghistostats. Sample--sample statistic variation: Although, traditionally, variation shown using standard error mean (SEM) statistic, ggstatsplot plots instead use 95% confidence intervals. interval formed error bars correspond 68% confidence interval, particularly interesting interval ((Cleveland, 1985), p.222-225). Sample--sample variation regression estimates displayed using confidence intervals ggcoefstats().","code":"gghistostats( data = morley, x = Speed, test.value = 792, xlab = \"Speed of light (km/sec, with 299000 subtracted)\", title = \"Distribution of measured Speed of light\", caption = \"Note: Data collected across 5 experiments (20 measurements each)\" ) model <- lme4::lmer( formula = total.fruits ~ nutrient + rack + (nutrient | gen), data = lme4::Arabidopsis ) ggcoefstats(model)"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"data-requirements","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Data requirements","title":"Graphic design and statistical reporting principles","text":"extension ggplot2, ggstatsplot expectations structure data. specifically, data organized following principles tidy data, specify statistical structure data frame (variables observations) mapped physical structure (columns rows). specifically, tidy data means variables columns row corresponds unique observation ((Wickham, 2014)). ggstatsplot functions remove NAs variables interest (similar ggplot2; (Wickham, 2016), p.207) data display total sample size (n, either observations -subjects pairs within-subjects designs) subtitle inform user/reader number observations included statistical analysis visualization. , sample sizes differ across tests function, ggstatsplot makes effort inform user aspect. example, ggcorrmat features several correlation test pairs , depending variables given pair, sample sizes may vary. ggstatsplot functions remove NAs variables interest display total sample size , can give nuanced information sample sizes differs across tests. example, ggcorrmat display () one total sample size NAs present, () instead show minimum, median, maximum sample sizes across correlation tests NAs present across correlation variables.","code":"## creating a new dataset without any NAs in variables of interest msleep_no_na <- dplyr::filter( ggplot2::msleep, !is.na(sleep_rem), !is.na(awake), !is.na(brainwt), !is.na(bodywt) ) ## variable names vector var_names <- c(\"REM sleep\", \"time awake\", \"brain weight\", \"body weight\") ## combining two plots using helper function in `{ggstatsplot}` combine_plots( plotlist = purrr::pmap( .l = list(data = list(msleep_no_na, ggplot2::msleep)), .f = ggcorrmat, cor.vars = c(sleep_rem, awake:bodywt), cor.vars.names = var_names, colors = c(\"#B2182B\", \"white\", \"#4D4D4D\"), title = \"Correlalogram for mammals sleep dataset\", subtitle = \"sleep units: hours; weight units: kilograms\" ), plotgrid.args = list(nrow = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"statistical-reporting","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Statistical reporting","title":"Graphic design and statistical reporting principles","text":"combining statistical analysis data visualization helpful? list reasons - recent survey (Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 2016) revealed one eight papers major psychology journals contained grossly inconsistent p-value may affected statistical conclusion. ggstatsplot helps avoid reporting errors: Since plot statistical analysis yoked together, chances making error reporting results minimized. One need write results manually copy-paste different statistics software program (like SPSS, SAS, ). default setting ggstatsplot produce plots statistical details included. often , results displayed subtitle plot. Great care taken details included statistical reporting . APA guidelines (Association, 2009) followed default reporting statistical details: Percentages displayed decimal places. Correlations, t-tests, χ2\\chi^2-tests reported degrees freedom parentheses significance level. ANOVAs reported two degrees freedom significance level. Regression results presented unstandardized standardized estimate (beta), whichever specified user, along statistic (depending model, can t, F, z statistic) corresponding significance level. exception p-values, statistics rounded two decimal places default.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"dealing-with-null-results","dir":"Articles > Web_only","previous_headings":"Statistical analysis","what":"Dealing with null results:","title":"Graphic design and statistical reporting principles","text":"functions therefore default return Bayesian favor null hypothesis default. null hypothesis can’t rejected null hypothesis significance testing (NHST) approach, Bayesian approach can help index evidence favor null hypothesis (.e., BF01BF_{01}). default, natural logarithms shown Bayesian values can sometimes pretty large. values logarithmic scale also makes easy compare evidence favor alternative (BF10BF_{10}) versus null (BF01BF_{01}) hypotheses (since loge(BF01)=−loge(BF01)log_{e}(BF_{01}) = - log_{e}(BF_{01})).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/principles.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Graphic design and statistical reporting principles","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"why-use-purrr","dir":"Articles > Web_only","previous_headings":"","what":"Why use {purrr}?","title":"Using 'ggstatsplot' with the 'purrr' package","text":"ggstatsplot functions grouped_ variants, designed quickly run ggstatsplot function across multiple levels single grouping variable. Although function useful data exploration, two strong weaknesses- arguments applied grouped_ function call applied uniformly levels grouping variable might want customize different levels grouping variable. one grouping variable can used repeat analysis reality can combination grouping variables operation needs repeated resulting combinations. see overcome limitation combining ggstatsplot purrr package. Note: using purrr::pmap(), must input arguments strings. can use ggplot2 themes extension packages (e.g. ggthemes). ’d like background introduction purrr package, please see chapter.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"introduction-and-methodology","dir":"Articles > Web_only","previous_headings":"","what":"Introduction and methodology","title":"Using 'ggstatsplot' with the 'purrr' package","text":"examples vignette going build lists things pass along purrr turn return list plots passed combine_plots. name implies combine_plots merges individual plots one bigger plot common labeling aesthetics. lists building? lists correspond parameters ggstatsplot function like ggbetweenstats. look help file ?ggbetweenstats example first parameter wants data file ’ll using. can also pass different titles even ggtheme themes. can pass: single character string xlab = \"Continent\" numeric nboot = 25 case reused/recycled many times needed. vector values nboot = c(50, 100, 200) case coerced list checked right class (case integer) right quantity entries vector .e., nboot = c(50, 100) fail ’re trying make three plots. list; either named data = year_list created go palette = list(\"Dark2\", \"Set1\"). list checked right class (case character) right quantity entries list.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggbetweenstats","dir":"Articles > Web_only","previous_headings":"","what":"ggbetweenstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"Let’s start ggebtweenstats. ’ll use gapminder dataset. ’ll make 3 item list called year_list using dplyr::filter split. Now data divided three relevant years list ’ll turn purrr::pmap create list ggplot objects ’ll make use stored plot_list. look documentation ?pmap accept .l list lists. length .l determines number arguments .f called . List names used present. .f function want apply (, .f = ggbetweenstats). Let’s keep building list arguments, .l. First data = year_list, x y axes constant three plots pass variable name string x = \"continent\". final step pass plot_list object just created combine_plots function. 3 plots already labeling information combine_plots gives us opportunity add additional details merged plots specify layout rows columns.","code":"## let's split the data frame and create a list by years of interest year_list <- gapminder::gapminder %>% dplyr::filter(year %in% c(1967, 1987, 2007), continent != \"Oceania\") %>% split(f = .$year, drop = TRUE) ## checking the length of the list and the names of each element length(year_list) names(year_list) ## creating a list of plots plot_list <- purrr::pmap( .l = list( data = year_list, x = \"continent\", y = \"lifeExp\", xlab = \"Continent\", ylab = \"Life expectancy\", title = list( \"Year: 1967\", \"Year: 1987\", \"Year: 2007\" ), type = list(\"r\", \"bf\", \"np\"), pairwise.display = list(\"s\", \"ns\", \"all\"), p.adjust.method = list(\"hommel\", \"bonferroni\", \"BH\"), conf.level = list(0.99, 0.95, 0.90), digits = list(1, 2, 3), effsize.type = list( NULL, \"partial_omega\", \"partial_eta\" ), package = list(\"nord\", \"ochRe\", \"awtools\"), palette = list(\"aurora\", \"parliament\", \"bpalette\"), ggtheme = list( ggthemes::theme_stata(), ggplot2::theme_classic(), ggthemes::theme_fivethirtyeight() ) ), .f = ggbetweenstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Changes in life expectancy across continents (1967-2007)\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggwithinstats","dir":"Articles > Web_only","previous_headings":"","what":"ggwithinstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"using simulated data Attention Network Test provided ANT dataset ez package.","code":"library(ez) data(\"ANT\") ## loading data from `ez` package ## let's split the data frame and create a list by years of interest cue_list <- ANT %>% split(f = .$cue, drop = TRUE) ## checking the length of the list and the names of each element length(cue_list) ## creating a list of plots by applying the same function for elements of the list plot_list <- purrr::pmap( .l = list( data = cue_list, x = \"flank\", y = \"rt\", xlab = \"Flank\", ylab = \"Response time\", title = list( \"Cue: None\", \"Cue: Center\", \"Cue: Double\", \"Cue: Spatial\" ), type = list(\"p\", \"r\", \"bf\", \"np\"), pairwise.display = list(\"ns\", \"s\", \"ns\", \"all\"), p.adjust.method = list(\"fdr\", \"hommel\", \"bonferroni\", \"BH\"), conf.level = list(0.99, 0.99, 0.95, 0.90), digits = list(3, 2, 2, 3), effsize.type = list( \"omega\", \"eta\", \"partial_omega\", \"partial_eta\" ), package = list(\"ggsci\", \"palettetown\", \"palettetown\", \"wesanderson\"), palette = list(\"lanonc_lancet\", \"venomoth\", \"blastoise\", \"GrandBudapest1\"), ggtheme = list( ggplot2::theme_linedraw(), hrbrthemes::theme_ft_rc(), ggthemes::theme_solarized(), ggthemes::theme_gdocs() ) ), .f = ggwithinstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Response times across flank conditions for each type of cue\"), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggscatterstats","dir":"Articles > Web_only","previous_headings":"","what":"ggscatterstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"next example lets use methodology different data using ggscatterstats produce scatterplots combined marginal histograms/boxplots/density plots statistical details added subtitle. data ’ll use movies_long IMDB part ggstatsplot package. Since ’s large dataset relatively small categories like NC-17 ’ll sample one quarter data completely drop NC-17 using dplyr. time ’ll put code one block- remainder examples vary content follow exact methodology earlier examples.","code":"mpaa_list <- movies_long %>% dplyr::filter(mpaa != \"NC-17\") %>% dplyr::sample_frac(size = 0.25) %>% split(f = .$mpaa, drop = TRUE) ## creating a list of plots plot_list <- purrr::pmap( .l = list( data = mpaa_list, x = \"budget\", y = \"rating\", xlab = \"Budget (in millions of US dollars)\", ylab = \"Rating on IMDB\", title = list( \"MPAA Rating: PG\", \"MPAA Rating: PG-13\", \"MPAA Rating: R\" ), label.var = list(\"title\"), ## note that you need to quote the expressions label.expression = list( quote(rating > 7.5 & budget < 100), quote(rating > 8 & budget < 50), quote(rating > 8 & budget < 10) ), type = list(\"r\", \"np\", \"bf\"), xfill = list(\"#009E73\", \"#999999\", \"#0072B2\"), yfill = list(\"#CC79A7\", \"#F0E442\", \"#D55E00\"), ggtheme = list( ggthemes::theme_tufte(), ggplot2::theme_classic(), ggplot2::theme_light() ) ), .f = ggscatterstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Relationship between movie budget and IMDB rating\", caption = \"Source: www.imdb.com\" ), plotgrid.args = list(ncol = 1) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggcorrmat","dir":"Articles > Web_only","previous_headings":"","what":"ggcorrmat","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## splitting the data frame by cut and creating a list ## let's leave out \"fair\" cut ## also, to make this fast, let's only use 5% of the sample cut_list <- ggplot2::diamonds %>% dplyr::sample_frac(size = 0.05) %>% dplyr::filter(cut != \"Fair\") %>% split(f = .$cut, drop = TRUE) ## checking the length and names of each element length(cut_list) names(cut_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = cut_list, cor.vars = list(c(\"carat\", \"depth\", \"table\", \"price\")), type = list(\"pearson\", \"np\", \"robust\", \"bf\"), partial = list(TRUE, FALSE, TRUE, FALSE), title = list(\"Cut: Good\", \"Cut: Very Good\", \"Cut: Premium\", \"Cut: Ideal\"), p.adjust.method = list(\"hommel\", \"fdr\", \"BY\", \"hochberg\"), lab.size = 3.5, colors = list( c(\"#56B4E9\", \"white\", \"#999999\"), c(\"#CC79A7\", \"white\", \"#F0E442\"), c(\"#56B4E9\", \"white\", \"#D55E00\"), c(\"#999999\", \"white\", \"#0072B2\") ), ggtheme = list( ggplot2::theme_linedraw(), ggplot2::theme_classic(), ggthemes::theme_fivethirtyeight(), ggthemes::theme_tufte() ) ), .f = ggcorrmat ) ## combining all individual plots from the list into a single plot using ## `combine_plots` function combine_plots( plotlist = plot_list, guides = \"keep\", annotation.args = list( title = \"Relationship between diamond attributes and price across cut\", caption = \"Dataset: Diamonds from ggplot2 package\" ), plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"gghistostats","dir":"Articles > Web_only","previous_headings":"","what":"gghistostats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by continent ## let's leave out Oceania because it has just two data points continent_list <- gapminder::gapminder %>% dplyr::filter(year == 2007, continent != \"Oceania\") %>% split(f = .$continent, drop = TRUE) ## checking the length and names of each element length(continent_list) names(continent_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = continent_list, x = \"lifeExp\", xlab = \"Life expectancy\", test.value = list(35.6, 58.4, 41.6, 64.7), type = list(\"p\", \"np\", \"r\", \"bf\"), bf.message = list(TRUE, FALSE, FALSE, FALSE), title = list( \"Continent: Africa\", \"Continent: Americas\", \"Continent: Asia\", \"Continent: Europe\" ), effsize.type = list(\"d\", \"d\", \"g\", \"g\"), ggtheme = list( ggplot2::theme_classic(), hrbrthemes::theme_ipsum_tw(), ggplot2::theme_minimal(), hrbrthemes::theme_modern_rc() ) ), .f = gghistostats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Improvement in life expectancy worldwide since 1950\", caption = \"Note: black line - 1950; blue line - 2007\" ), plotgrid.args = list(nrow = 4) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggdotplotstats","dir":"Articles > Web_only","previous_headings":"","what":"ggdotplotstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"library(ggthemes) library(hrbrthemes) ## let's split the data frame and create a list by continent ## let's leave out Oceania because it has just two data points continent_list <- gapminder::gapminder %>% dplyr::filter(continent != \"Oceania\") %>% split(f = .$continent, drop = TRUE) ## checking the length and names of each element length(continent_list) names(continent_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = continent_list, x = \"gdpPercap\", y = \"year\", xlab = \"GDP per capita (US$, inflation-adjusted)\", test.value = list(2500, 9000, 9500, 10000), type = list(\"p\", \"np\", \"r\", \"bf\"), title = list( \"Continent: Africa\", \"Continent: Americas\", \"Continent: Asia\", \"Continent: Europe\" ), effsize.type = list(\"d\", \"d\", \"g\", \"g\"), centrality.line.args = list( list(color = \"red\"), list(color = \"#0072B2\"), list(color = \"#D55E00\"), list(color = \"#CC79A7\") ), ggtheme = list( ggplot2::theme_minimal(base_family = \"serif\"), ggthemes::theme_tufte(), hrbrthemes::theme_ipsum_rc(axis_title_size = 10), ggthemes::theme_hc(bgcolor = \"darkunica\") ) ), .f = ggdotplotstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Improvement in GDP per capita from 1952-2007\"), plotgrid.args = list(nrow = 4), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggpiestats","dir":"Articles > Web_only","previous_headings":"","what":"ggpiestats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by passenger class class_list <- Titanic_full %>% split(f = .$Class, drop = TRUE) ## checking the length and names of each element length(class_list) names(class_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = class_list, x = \"Survived\", y = \"Sex\", label = list(\"both\", \"count\", \"percentage\", \"both\"), title = list( \"Passenger class: 1st\", \"Passenger class: 2nd\", \"Passenger class: 3rd\", \"Passenger class: Crew\" ), caption = list( \"Total: 319, Died: 120, Survived: 199, % Survived: 62%\", \"Total: 272, Died: 155, Survived: 117, % Survived: 43%\", \"Total: 709, Died: 537, Survived: 172, % Survived: 25%\", \"Data not available for crew passengers\" ), package = list(\"RColorBrewer\", \"ghibli\", \"palettetown\", \"yarrr\"), palette = list(\"Accent\", \"MarnieMedium1\", \"pikachu\", \"nemo\"), ggtheme = list( ggplot2::theme_grey(), ggplot2::theme_bw(), ggthemes::theme_tufte(), ggthemes::theme_economist() ), proportion.test = list(TRUE, FALSE, TRUE, FALSE), type = list(\"p\", \"p\", \"bf\", \"p\") ), .f = ggpiestats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list(title = \"Survival in Titanic disaster by gender for all passenger classes\"), plotgrid.args = list(ncol = 1), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"ggbarstats","dir":"Articles > Web_only","previous_headings":"","what":"ggbarstats","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"## let's split the data frame and create a list by passenger class class_list <- Titanic_full %>% split(f = .$Class, drop = TRUE) ## checking the length and names of each element length(class_list) names(class_list) ## running function on every element of this list note that if you want the same ## value for a given argument across all elements of the list, you need to ## specify it just once plot_list <- purrr::pmap( .l = list( data = class_list, x = \"Survived\", y = \"Sex\", type = \"bayes\", label = list(\"both\", \"count\", \"percentage\", \"both\"), title = list( \"Passenger class: 1st\", \"Passenger class: 2nd\", \"Passenger class: 3rd\", \"Passenger class: Crew\" ), caption = list( \"Total: 319, Died: 120, Survived: 199, % Survived: 62%\", \"Total: 272, Died: 155, Survived: 117, % Survived: 43%\", \"Total: 709, Died: 537, Survived: 172, % Survived: 25%\", \"Data not available for crew passengers\" ), package = list(\"RColorBrewer\", \"ghibli\", \"palettetown\", \"yarrr\"), palette = list(\"Accent\", \"MarnieMedium1\", \"pikachu\", \"nemo\"), ggtheme = list( ggplot2::theme_grey(), ggplot2::theme_bw(), ggthemes::theme_tufte(), ggthemes::theme_economist() ) ), .f = ggbarstats ) ## combining all individual plots from the list into a single plot using combine_plots function combine_plots( plotlist = plot_list, annotation.args = list( title = \"Survival in Titanic disaster by gender for all passenger classes\", caption = \"Asterisks denote results from proportion tests: \\n***: p < 0.001, ns: non-significant\" ), plotgrid.args = list(ncol = 1), guides = \"keep\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"grouped_-variants","dir":"Articles > Web_only","previous_headings":"","what":"grouped_ variants","title":"Using 'ggstatsplot' with the 'purrr' package","text":"Note although examples written non-grouped variants functions, rule holds true grouped_ variants functions. example, want use grouped_gghistostats across three different datasets, can use purrr::pmap() function. sake brevity, plots displayed , can run following code check individual grouped_ plots (e.g., plotlist[[1]]).","code":"## create a list of plots plotlist <- purrr::pmap( .l = list( data = list(mtcars, iris, ToothGrowth), x = alist(wt, Sepal.Length, len), results.subtitle = list(FALSE), grouping.var = alist(am, Species, supp) ), .f = grouped_gghistostats ) ## given that we had three different datasets, we expect a list of length 3 ## (each of which contains a `grouped_` plot) length(plotlist)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"repeating-function-execution-across-multiple-columns-in-a-data-frame","dir":"Articles > Web_only","previous_headings":"","what":"Repeating function execution across multiple columns in a data frame","title":"Using 'ggstatsplot' with the 'purrr' package","text":"","code":"library(patchwork) ## running the same analysis on two different columns (creates a list of plots) plotlist <- purrr::pmap( .l = list( data = list(movies_long), x = \"mpaa\", y = list(\"rating\", \"length\"), title = list(\"IMDB score by MPAA rating\", \"Movie length by MPAA rating\") ), .f = ggbetweenstats ) ## combine plots using `patchwork` plotlist[[1]] + plotlist[[2]]"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/purrr_examples.html","id":"suggestions","dir":"Articles > Web_only","previous_headings":"","what":"Suggestions","title":"Using 'ggstatsplot' with the 'purrr' package","text":"find bugs suggestions/remarks, please file issue GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Indrajeet Patil. Maintainer, author, copyright holder. Chuck Powell. Contributor.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Patil, . (2021). Visualizations statistical details: 'ggstatsplot' approach. Journal Open Source Software, 6(61), 3167, doi:10.21105/joss.03167","code":"@Article{, doi = {10.21105/joss.03167}, url = {https://doi.org/10.21105/joss.03167}, year = {2021}, publisher = {{The Open Journal}}, volume = {6}, number = {61}, pages = {3167}, author = {Indrajeet Patil}, title = {{Visualizations with statistical details: The {'ggstatsplot'} approach}}, journal = {{Journal of Open Source Software}}, }"},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"raison-dêtre-","dir":"","previous_headings":"","what":"Raison d’être","title":"ggplot2 Based Plots with Statistical Details","text":"“sought designs display information clear portrayal complexity. complication simple; rather … revelation complex.” - Edward R. Tufte {ggstatsplot} extension {ggplot2} package creating graphics details statistical tests included information-rich plots . typical exploratory data analysis workflow, data visualization statistical modeling two different phases: visualization informs modeling, modeling turn can suggest different visualization method, forth. central idea ggstatsplot simple: combine two phases one form graphics statistical details, makes data exploration simpler faster.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"ggplot2 Based Plots with Statistical Details","text":"want cite package scientific journal context, run following code R console:","code":"citation(\"ggstatsplot\") To cite package 'ggstatsplot' in publications use: Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167 A BibTeX entry for LaTeX users is @Article{, doi = {10.21105/joss.03167}, url = {https://doi.org/10.21105/joss.03167}, year = {2021}, publisher = {{The Open Journal}}, volume = {6}, number = {61}, pages = {3167}, author = {Indrajeet Patil}, title = {{Visualizations with statistical details: The {'ggstatsplot'} approach}}, journal = {{Journal of Open Source Software}}, }"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"acknowledgments","dir":"","previous_headings":"","what":"Acknowledgments","title":"ggplot2 Based Plots with Statistical Details","text":"like thank contributors ggstatsplot pointed bugs requested features hadn’t considered. especially like thank package developers (especially Daniel Lüdecke, Dominique Makowski, Mattan S. Ben-Shachar, Brenton Wiernik, Patrick Mair, Salvatore Mangiafico, etc.) patiently diligently answered relentless questions supported feature requests projects. also want thank Chuck Powell initial contributions package. hexsticker generously designed Sarah Otterstetter (Max Planck Institute Human Development, Berlin). package also benefited larger #rstats community Twitter, LinkedIn, StackOverflow. Thanks also due postdoc advisers (Mina Cikara Fiery Cushman Harvard University; Iyad Rahwan Max Planck Institute Human Development) patiently supported spending hundreds (?) hours working package rather paid . 😁","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"documentation-and-examples","dir":"","previous_headings":"","what":"Documentation and Examples","title":"ggplot2 Based Plots with Statistical Details","text":"see detailed documentation function stable CRAN version package, see: Publication Presentation Vignettes","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-available-plots","dir":"","previous_headings":"","what":"Summary of available plots","title":"ggplot2 Based Plots with Statistical Details","text":"addition basic plots, ggstatsplot also provides grouped_ versions (see ) makes easy repeat analysis grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-types-of-statistical-analyses","dir":"","previous_headings":"","what":"Summary of types of statistical analyses","title":"ggplot2 Based Plots with Statistical Details","text":"table summarizes different types analyses currently supported package- Summary Bayesian analysis","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"statistical-reporting","dir":"","previous_headings":"","what":"Statistical reporting","title":"ggplot2 Based Plots with Statistical Details","text":"statistical tests reported plots, default template abides gold standard statistical reporting. example, results Yuen’s test trimmed means (robust t-test):","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-statistical-tests-and-effect-sizes","dir":"","previous_headings":"","what":"Summary of statistical tests and effect sizes","title":"ggplot2 Based Plots with Statistical Details","text":"Statistical analysis carried statsExpressions package, thus summary table statistical tests currently supported across various functions can found article package: https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggbetweenstats","dir":"","previous_headings":"Primary functions","what":"ggbetweenstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates either violin plot, box plot, mix two -group -condition comparisons results statistical tests subtitle. simplest function call looks like - Defaults return ✅ raw data + distributions ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ pairwise comparisons ✅ Bayesian hypothesis-testing ✅ Bayesian estimation number arguments can specified make plot even informative change default options. Additionally, also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":"set.seed(123) ggbetweenstats( data = iris, x = Species, y = Sepal.Length, title = \"Distribution of sepal length across Iris species\" ) set.seed(123) grouped_ggbetweenstats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = mpaa, y = length, grouping.var = genre, ggsignif.args = list(textsize = 4, tip_length = 0.01), p.adjust.method = \"bonferroni\", palette = \"default_jama\", package = \"ggsci\", plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Differences in movie length by mpaa ratings for different genres\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggwithinstats","dir":"","previous_headings":"Primary functions","what":"ggwithinstats()","title":"ggplot2 Based Plots with Statistical Details","text":"ggbetweenstats() function identical twin function ggwithinstats() repeated measures designs behaves fashion minor tweaks introduced properly visualize repeated measures design. can seen example , difference plot structure now group means connected paths highlight fact data paired . Defaults return ✅ raw data + distributions ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ pairwise comparisons ✅ Bayesian hypothesis-testing ✅ Bayesian estimation ggbetweenstats(), function also grouped_ variant makes repeating analysis across single grouping variable quicker. see example repeated measurements- Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":"set.seed(123) library(WRS2) ## for data library(afex) ## to run ANOVA ggwithinstats( data = WineTasting, x = Wine, y = Taste, title = \"Wine tasting\" ) set.seed(123) grouped_ggwithinstats( data = dplyr::filter(bugs_long, region %in% c(\"Europe\", \"North America\"), condition %in% c(\"LDLF\", \"LDHF\")), x = condition, y = desire, type = \"np\", xlab = \"Condition\", ylab = \"Desire to kill an artrhopod\", grouping.var = region )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"gghistostats","dir":"","previous_headings":"Primary functions","what":"gghistostats()","title":"ggplot2 Based Plots with Statistical Details","text":"visualize distribution single variable check mean significantly different specified value one-sample test, gghistostats() can used. Defaults return ✅ counts + proportion bins ✅ descriptive statistics ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":"set.seed(123) gghistostats( data = ggplot2::msleep, x = awake, title = \"Amount of time spent awake\", test.value = 12, binwidth = 1 ) set.seed(123) grouped_gghistostats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = budget, test.value = 50, type = \"nonparametric\", xlab = \"Movies budget (in million US$)\", grouping.var = genre, ggtheme = ggthemes::theme_tufte(), ## modify the defaults from `{ggstatsplot}` for each plot plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Movies budgets for different genres\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggdotplotstats","dir":"","previous_headings":"Primary functions","what":"ggdotplotstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function similar gghistostats(), intended used numeric variable also label. Defaults return ✅ descriptives (mean + sample size) ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation rest functions package, also grouped_ variant function facilitate looping operation levels single grouping variable. Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":"set.seed(123) ggdotplotstats( data = dplyr::filter(gapminder::gapminder, continent == \"Asia\"), y = country, x = lifeExp, test.value = 55, type = \"robust\", title = \"Distribution of life expectancy in Asian continent\", xlab = \"Life expectancy\" ) set.seed(123) grouped_ggdotplotstats( data = dplyr::filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\")), x = cty, y = manufacturer, type = \"bayes\", xlab = \"city miles per gallon\", ylab = \"car manufacturer\", grouping.var = cyl, test.value = 15.5, point.args = list(color = \"red\", size = 5, shape = 13), annotation.args = list(title = \"Fuel economy data\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggscatterstats","dir":"","previous_headings":"Primary functions","what":"ggscatterstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates scatterplot marginal distributions overlaid axes results statistical tests subtitle: Defaults return ✅ raw data + distributions ✅ marginal distributions ✅ inferential statistics ✅ effect size + CIs ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable. Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":"ggscatterstats( data = ggplot2::msleep, x = sleep_rem, y = awake, xlab = \"REM sleep (in hours)\", ylab = \"Amount of time spent awake (in hours)\", title = \"Understanding mammalian sleep\" ) set.seed(123) grouped_ggscatterstats( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), x = rating, y = length, grouping.var = genre, label.var = title, label.expression = length > 200, xlab = \"IMDB rating\", ggtheme = ggplot2::theme_grey(), ggplot.component = list(ggplot2::scale_x_continuous(breaks = seq(2, 9, 1), limits = (c(2, 9)))), plotgrid.args = list(nrow = 1), annotation.args = list(title = \"Relationship between movie length and IMDB ratings\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggcorrmat","dir":"","previous_headings":"Primary functions","what":"ggcorrmat","title":"ggplot2 Based Plots with Statistical Details","text":"ggcorrmat makes correlalogram (matrix correlation coefficients) minimal amount code. Just sticking defaults produces publication-ready correlation matrices. , sake exploring available options, let’s change defaults. example, multiple aesthetics-related arguments can modified change appearance correlation matrix. Defaults return ✅ effect size + significance ✅ careful handling NAs NAs present selected variables, legend display minimum, median, maximum number pairs used correlation tests. also grouped_ variant function makes easy repeat operation across single grouping variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":"set.seed(123) ## as a default this function outputs a correlation matrix plot ggcorrmat( data = ggplot2::msleep, colors = c(\"#B2182B\", \"white\", \"#4D4D4D\"), title = \"Correlalogram for mammals sleep dataset\", subtitle = \"sleep units: hours; weight units: kilograms\" ) set.seed(123) grouped_ggcorrmat( data = dplyr::filter(movies_long, genre %in% c(\"Action\", \"Comedy\")), type = \"robust\", colors = c(\"#cbac43\", \"white\", \"#550000\"), grouping.var = genre, matrix.type = \"lower\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggpiestats","dir":"","previous_headings":"Primary functions","what":"ggpiestats()","title":"ggplot2 Based Plots with Statistical Details","text":"function creates pie chart categorical nominal variables results contingency table analysis (Pearson’s chi-squared test -subjects design McNemar’s chi-squared test within-subjects design) included subtitle plot. one categorical variable entered, results one-sample proportion test (.e., chi-squared goodness fit test) displayed subtitle. study interaction two categorical variables: Defaults return ✅ descriptives (frequency + %s) ✅ inferential statistics ✅ effect size + CIs ✅ Goodness--fit tests ✅ Bayesian hypothesis-testing ✅ Bayesian estimation also grouped_ variant function makes easy repeat operation across single grouping variable. Following example case theoretical question proportions different levels single nominal variable: Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":"set.seed(123) ggpiestats( data = mtcars, x = am, y = cyl, package = \"wesanderson\", palette = \"Royal1\", title = \"Dataset: Motor Trend Car Road Tests\", legend.title = \"Transmission\" ) set.seed(123) grouped_ggpiestats( data = mtcars, x = cyl, grouping.var = am, label.repel = TRUE, package = \"ggsci\", palette = \"default_ucscgb\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggbarstats","dir":"","previous_headings":"Primary functions","what":"ggbarstats()","title":"ggplot2 Based Plots with Statistical Details","text":"case fan pie charts (good reasons), can alternatively use ggbarstats() function similar syntax. N.B. p-values one-sample proportion test displayed top bar. Defaults return ✅ descriptives (frequency + %s) ✅ inferential statistics ✅ effect size + CIs ✅ Goodness--fit tests ✅ Bayesian hypothesis-testing ✅ Bayesian estimation , needless say, also grouped_ variant function- Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbarstats.html","code":"set.seed(123) library(ggplot2) ggbarstats( data = movies_long, x = mpaa, y = genre, title = \"MPAA Ratings by Genre\", xlab = \"movie genre\", legend.title = \"MPAA rating\", ggplot.component = list(ggplot2::scale_x_discrete(guide = ggplot2::guide_axis(n.dodge = 2))), palette = \"Set2\" ) ## setup set.seed(123) grouped_ggbarstats( data = mtcars, x = am, y = cyl, grouping.var = vs, package = \"wesanderson\", palette = \"Darjeeling2\" # , # ggtheme = ggthemes::theme_tufte(base_size = 12) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"ggcoefstats","dir":"","previous_headings":"Primary functions","what":"ggcoefstats()","title":"ggplot2 Based Plots with Statistical Details","text":"function ggcoefstats() generates dot--whisker plots regression models. tidy data frames prepared using parameters::model_parameters(). Additionally, available, model summary indices also extracted performance::model_performance(). Defaults return ✅ inferential statistics ✅ estimate + CIs ✅ model summary (AIC BIC) Details underlying functions used create graphics statistical tests carried can found function documentation: https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html , also read following vignette: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":"set.seed(123) ## model mod <- stats::lm(formula = mpg ~ am * cyl, data = mtcars) ggcoefstats(mod)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"extracting-expressions-and-data-frames-with-statistical-details","dir":"","previous_headings":"Primary functions","what":"Extracting expressions and data frames with statistical details","title":"ggplot2 Based Plots with Statistical Details","text":"ggstatsplot also offers convenience function extract data frames statistical details used create expressions displayed ggstatsplot plots. Note analysis carried statsExpressions package: https://indrajeetpatil.github.io/statsExpressions/","code":"set.seed(123) p <- ggbetweenstats(mtcars, cyl, mpg) # extracting expression present in the subtitle extract_subtitle(p) #> list(italic(\"F\")[\"Welch\"](2, 18.03) == \"31.62\", italic(p) == #> \"1.27e-06\", widehat(omega[\"p\"]^2) == \"0.74\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"32\") # extracting expression present in the caption extract_caption(p) #> list(log[e] * (BF[\"01\"]) == \"-14.92\", widehat(italic(R^\"2\"))[\"Bayesian\"]^\"posterior\" == #> \"0.71\", CI[\"95%\"]^HDI ~ \"[\" * \"0.57\", \"0.79\" * \"]\", italic(\"r\")[\"Cauchy\"]^\"JZS\" == #> \"0.71\") # a list of tibbles containing statistical analysis summaries extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> statistic df df.error p.value #> #> 1 31.6 2 18.0 0.00000127 #> method effectsize estimate #> #> 1 One-way analysis of means (not assuming equal variances) Omega2 0.744 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0.531 1 ncp F 32 #> #> $caption_data #> # A tibble: 6 × 17 #> term pd prior.distribution prior.location prior.scale bf10 #> #> 1 mu 1 cauchy 0 0.707 3008850. #> 2 cyl-4 1 cauchy 0 0.707 3008850. #> 3 cyl-6 0.780 cauchy 0 0.707 3008850. #> 4 cyl-8 1 cauchy 0 0.707 3008850. #> 5 sig2 1 cauchy 0 0.707 3008850. #> 6 g_cyl 1 cauchy 0 0.707 3008850. #> method log_e_bf10 effectsize estimate std.dev #> #> 1 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 2 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 3 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 4 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 5 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 6 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> conf.level conf.low conf.high conf.method n.obs expression #> #> 1 0.95 0.574 0.788 HDI 32 #> 2 0.95 0.574 0.788 HDI 32 #> 3 0.95 0.574 0.788 HDI 32 #> 4 0.95 0.574 0.788 HDI 32 #> 5 0.95 0.574 0.788 HDI 32 #> 6 0.95 0.574 0.788 HDI 32 #> #> $pairwise_comparisons_data #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 -6.67 0.00110 two.sided q Holm #> 2 4 8 -10.7 0.0000140 two.sided q Holm #> 3 6 8 -7.48 0.000257 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"using-ggstatsplot-statistical-details-with-custom-plots","dir":"","previous_headings":"Primary functions","what":"Using {ggstatsplot} statistical details with custom plots","title":"ggplot2 Based Plots with Statistical Details","text":"Sometimes may like default plots produced ggstatsplot. cases, can use custom plots (ggplot2 plotting packages) still use ggstatsplot functions display results relevant statistical test. example, following chunk, create plot using ggplot2 package, use ggstatsplot function extracting expression:","code":"## loading the needed libraries set.seed(123) library(ggplot2) ## using `{ggstatsplot}` to get expression with statistical results stats_results <- ggbetweenstats(morley, Expt, Speed) %>% extract_subtitle() ## creating a custom plot of our choosing ggplot(morley, aes(x = as.factor(Expt), y = Speed)) + geom_boxplot() + labs( title = \"Michelson-Morley experiments\", subtitle = stats_results, x = \"Speed of light\", y = \"Experiment number\" )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"summary-of-benefits-of-using-ggstatsplot","dir":"","previous_headings":"","what":"Summary of benefits of using {ggstatsplot}","title":"ggplot2 Based Plots with Statistical Details","text":"need use scores packages statistical analysis (e.g., one get stats, one get effect sizes, another get Bayes Factors, yet another get pairwise comparisons, etc.). Minimal amount code needed functions (typically data, x, y), minimizes chances error makes tidy scripts. Conveniently toggle statistical approaches. Truly makes figures worth thousand words. need copy-paste results text editor (MS-Word, e.g.). Disembodied figures stand easy evaluate reader. breathing room theoretical discussion text. need worry updating figures statistical details separately.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"misconceptions-about-ggstatsplot","dir":"","previous_headings":"","what":"Misconceptions about {ggstatsplot}","title":"ggplot2 Based Plots with Statistical Details","text":"package … ❌ alternative learning ggplot2 ✅ (better know ggplot2, can modify defaults liking.) ❌ meant used talks/presentations ✅ (Default plots can complicated effectively communicating results time-constrained presentation settings, e.g. conference talks.) ❌ game town ✅ (GUI software alternatives: JASP jamovi).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"extensions","dir":"","previous_headings":"","what":"Extensions","title":"ggplot2 Based Plots with Statistical Details","text":"case use GUI software jamovi, can install module called jjstatsplot, wrapper around ggstatsplot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"ggplot2 Based Plots with Statistical Details","text":"’m happy receive bug reports, suggestions, questions, () contributions fix problems add features. personally prefer using GitHub issues system trying reach ways (personal e-mail, Twitter, etc.). Pull Requests contributions encouraged. simple ways can contribute (increasing order commitment): Read correct inconsistencies documentation Raise issues bugs wanted features Review code Add new functionality (form new plotting functions helpers preparing subtitles) Please note project released Contributor Code Conduct. participating project agree abide terms.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":null,"dir":"Reference","previous_headings":"","what":"Titanic dataset. — Titanic_full","title":"Titanic dataset. — Titanic_full","text":"Titanic dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Titanic dataset. — Titanic_full","text":"","code":"Titanic_full"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Titanic dataset. — Titanic_full","text":"data frame 2201 rows 5 variables id. Dummy identity number person. Class. 1st, 2nd, 3rd, Crew. Sex. Male, Female. Age. Child, Adult. Survived. , Yes.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Titanic dataset. — Titanic_full","text":"data set provides information fate passengers fatal maiden voyage ocean liner 'Titanic', summarized according economic status (class), sex, age survival. modified dataset {datasets} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/Titanic_full.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Titanic dataset. — Titanic_full","text":"","code":"dim(Titanic_full) #> [1] 2201 5 head(Titanic_full) #> # A tibble: 6 × 5 #> id Class Sex Age Survived #> #> 1 1 3rd Male Child No #> 2 2 3rd Male Child No #> 3 3 3rd Male Child No #> 4 4 3rd Male Child No #> 5 5 3rd Male Child No #> 6 6 3rd Male Child No dplyr::glimpse(Titanic_full) #> Rows: 2,201 #> Columns: 5 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18… #> $ Class 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3rd, 3… #> $ Sex Male, Male, Male, Male, Male, Male, Male, Male, Male, Male, M… #> $ Age Child, Child, Child, Child, Child, Child, Child, Child, Child… #> $ Survived No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, N…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy version of the ","title":"Tidy version of the ","text":"Tidy version \"Bugs\" dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy version of the ","text":"","code":"bugs_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Tidy version of the ","text":"data frame 372 rows 6 variables subject. Dummy identity number participant. gender. Participant's gender (Female, Male). region. Region world participant . education. Level education. condition. Condition experiment participant gave rating (LDLF: low freighteningness low disgustingness; LFHD: low freighteningness high disgustingness; HFHD: high freighteningness low disgustingness; HFHD: high freighteningness high disgustingness). desire. desire kill arthropod indicated scale 0 10.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy version of the ","text":"data set, \"Bugs\", provides extent men women want kill arthropods vary freighteningness (low, high) disgustingness (low, high). participant rates attitudes towards anthropods. Subset data reported Ryan et al. (2013).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Tidy version of the ","text":"Ryan, R. S., Wilde, M., & Crist, S. (2013). Compared small, supervised lab experiment, large, unsupervised web-based experiment previously unknown effect benefits outweigh potential costs. Computers Human Behavior, 29(4), 1295-1301.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/bugs_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy version of the ","text":"","code":"dim(bugs_long) #> [1] 372 6 head(bugs_long) #> # A tibble: 6 × 6 #> subject gender region education condition desire #> #> 1 1 Female North America some LDLF 6 #> 2 2 Female North America advance LDLF 10 #> 3 3 Female Europe college LDLF 5 #> 4 4 Female North America college LDLF 6 #> 5 5 Female North America some LDLF 3 #> 6 6 Female Europe some LDLF 2 dplyr::glimpse(bugs_long) #> Rows: 372 #> Columns: 6 #> $ subject 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1… #> $ gender Female, Female, Female, Female, Female, Female, Female, Fema… #> $ region North America, North America, Europe, North America, North A… #> $ education some, advance, college, college, some, some, some, high, hig… #> $ condition \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDLF\", \"LDL… #> $ desire 6.0, 10.0, 5.0, 6.0, 3.0, 2.0, 10.0, 10.0, 9.5, 8.5, 0.0, 9.…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Combining and arranging multiple plots in a grid — combine_plots","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"Wrapper around patchwork::wrap_plots() return combined grid plots annotations. case want create grid plots, highly recommended use {patchwork} package directly wrapper around mostly useful {ggstatsplot} plots. exported backward compatibility.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"","code":"combine_plots( plotlist, plotgrid.args = list(), annotation.args = list(), guides = \"collect\", ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"plotlist list containing ggplot objects. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation(). guides string specifying guides treated layout. 'collect' collect guides given nesting level, removing duplicates. 'keep' stop collection level let guides placed alongside plot. auto allow guides collected upper level tries, place alongside plot . modify default guide \"position\" theme(legend.position=...) also collecting guides must apply change overall patchwork (see example). ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"combined plot annotation labels.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/combine_plots.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Combining and arranging multiple plots in a grid — combine_plots","text":"","code":"library(ggplot2) # first plot p1 <- ggplot( data = subset(iris, iris$Species == \"setosa\"), aes(x = Sepal.Length, y = Sepal.Width) ) + geom_point() + labs(title = \"setosa\") # second plot p2 <- ggplot( data = subset(iris, iris$Species == \"versicolor\"), aes(x = Sepal.Length, y = Sepal.Width) ) + geom_point() + labs(title = \"versicolor\") # combining the plot with a title and a caption combine_plots( plotlist = list(p1, p2), plotgrid.args = list(nrow = 1), annotation.args = list( tag_levels = \"a\", title = \"Dataset: Iris Flower dataset\", subtitle = \"Edgar Anderson collected this data\", caption = \"Note: Only two species of flower are displayed\", theme = theme( plot.subtitle = element_text(size = 20), plot.title = element_text(size = 30) ) ) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Split data frame into a list by grouping variable — .grouped_list","title":"Split data frame into a list by grouping variable — .grouped_list","text":"function splits data frame list, length list equal factor levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split data frame into a list by grouping variable — .grouped_list","text":"","code":".grouped_list(data, grouping.var)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split data frame into a list by grouping variable — .grouped_list","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. grouping.var single grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-grouped_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split data frame into a list by grouping variable — .grouped_list","text":"","code":"ggstatsplot:::.grouped_list(ggplot2::msleep, grouping.var = vore) #> $data #> $data$carni #> # A tibble: 19 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Cheet… Acin… carni Carn… lc 12.1 NA NA 11.9 #> 2 North… Call… carni Carn… vu 8.7 1.4 0.383 15.3 #> 3 Dog Canis carni Carn… domesticated 10.1 2.9 0.333 13.9 #> 4 Long-… Dasy… carni Cing… lc 17.4 3.1 0.383 6.6 #> 5 Domes… Felis carni Carn… domesticated 12.5 3.2 0.417 11.5 #> 6 Pilot… Glob… carni Ceta… cd 2.7 0.1 NA 21.4 #> 7 Gray … Hali… carni Carn… lc 6.2 1.5 NA 17.8 #> 8 Thick… Lutr… carni Dide… lc 19.4 6.6 NA 4.6 #> 9 Slow … Nyct… carni Prim… NA 11 NA NA 13 #> 10 North… Onyc… carni Rode… lc 14.5 NA NA 9.5 #> 11 Tiger Pant… carni Carn… en 15.8 NA NA 8.2 #> 12 Jaguar Pant… carni Carn… nt 10.4 NA NA 13.6 #> 13 Lion Pant… carni Carn… vu 13.5 NA NA 10.5 #> 14 Caspi… Phoca carni Carn… vu 3.5 0.4 NA 20.5 #> 15 Commo… Phoc… carni Ceta… vu 5.6 NA NA 18.4 #> 16 Bottl… Turs… carni Ceta… NA 5.2 NA NA 18.8 #> 17 Genet Gene… carni Carn… NA 6.3 1.3 NA 17.7 #> 18 Arcti… Vulp… carni Carn… NA 12.5 NA NA 11.5 #> 19 Red f… Vulp… carni Carn… NA 9.8 2.4 0.35 14.2 #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$herbi #> # A tibble: 32 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Mount… Aplo… herbi Rode… nt 14.4 2.4 NA 9.6 #> 2 Cow Bos herbi Arti… domesticated 4 0.7 0.667 20 #> 3 Three… Brad… herbi Pilo… NA 14.4 2.2 0.767 9.6 #> 4 Roe d… Capr… herbi Arti… lc 3 NA NA 21 #> 5 Goat Capri herbi Arti… lc 5.3 0.6 NA 18.7 #> 6 Guine… Cavis herbi Rode… domesticated 9.4 0.8 0.217 14.6 #> 7 Chinc… Chin… herbi Rode… domesticated 12.5 1.5 0.117 11.5 #> 8 Tree … Dend… herbi Hyra… lc 5.3 0.5 NA 18.7 #> 9 Asian… Elep… herbi Prob… en 3.9 NA NA 20.1 #> 10 Horse Equus herbi Peri… domesticated 2.9 0.6 1 21.1 #> # ℹ 22 more rows #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$insecti #> # A tibble: 5 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Big br… Epte… inse… Chir… lc 19.7 3.9 0.117 4.3 #> 2 Little… Myot… inse… Chir… NA 19.9 2 0.2 4.1 #> 3 Giant … Prio… inse… Cing… en 18.1 6.1 NA 5.9 #> 4 Easter… Scal… inse… Sori… lc 8.4 2.1 0.167 15.6 #> 5 Short-… Tach… inse… Mono… NA 8.6 NA NA 15.4 #> # ℹ 2 more variables: brainwt , bodywt #> #> $data$omni #> # A tibble: 20 × 11 #> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake #> #> 1 Owl m… Aotus omni Prim… NA 17 1.8 NA 7 #> 2 Great… Blar… omni Sori… lc 14.9 2.3 0.133 9.1 #> 3 Grivet Cerc… omni Prim… lc 10 0.7 NA 14 #> 4 Star-… Cond… omni Sori… lc 10.3 2.2 NA 13.7 #> 5 Afric… Cric… omni Rode… NA 8.3 2 NA 15.7 #> 6 Lesse… Cryp… omni Sori… lc 9.1 1.4 0.15 14.9 #> 7 North… Dide… omni Dide… lc 18 4.9 0.333 6 #> 8 Europ… Erin… omni Erin… lc 10.1 3.5 0.283 13.9 #> 9 Patas… Eryt… omni Prim… lc 10.9 1.1 NA 13.1 #> 10 Galago Gala… omni Prim… NA 9.8 1.1 0.55 14.2 #> 11 Human Homo omni Prim… NA 8 1.9 1.5 16 #> 12 Macaq… Maca… omni Prim… NA 10.1 1.2 0.75 13.9 #> 13 Chimp… Pan omni Prim… NA 9.7 1.4 1.42 14.3 #> 14 Baboon Papio omni Prim… NA 9.4 1 0.667 14.6 #> 15 Potto Pero… omni Prim… lc 11 NA NA 13 #> 16 Afric… Rhab… omni Rode… NA 8.7 NA NA 15.3 #> 17 Squir… Saim… omni Prim… NA 9.6 1.4 NA 14.4 #> 18 Pig Sus omni Arti… domesticated 9.1 2.4 0.5 14.9 #> 19 Tenrec Tenr… omni Afro… NA 15.6 2.3 NA 8.4 #> 20 Tree … Tupa… omni Scan… NA 8.9 2.6 0.233 15.1 #> # ℹ 2 more variables: brainwt , bodywt #> #> #> $title #> [1] \"carni\" \"herbi\" \"insecti\" \"omni\" #>"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if palette has enough number of colors — .is_palette_sufficient","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"Informs user using default color palette number factor levels greater 8, maximum number colors allowed \"Dark2\" palette {RColorBrewer} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"","code":".is_palette_sufficient(package, palette, min_length)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/dot-is_palette_sufficient.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Check if palette has enough number of colors — .is_palette_sufficient","text":"","code":"ggstatsplot:::.is_palette_sufficient(\"RColorBrewer\", \"Dark2\", 6L) #> [1] TRUE ggstatsplot:::.is_palette_sufficient(\"RColorBrewer\", \"Dark2\", 12L) #> Number of labels is greater than default palette color count. #> • Select another color `palette` (and/or `package`). #> [1] FALSE"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":null,"dir":"Reference","previous_headings":"","what":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"Extracting data frames expressions {ggstatsplot} plots","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"","code":"extract_stats(p) extract_subtitle(p) extract_caption(p)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"p plot {ggstatsplot} package","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"list tibbles containing summaries various statistical analyses. exact details included depend function.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"convenience functions extract data frames expressions statistical details used create expressions displayed {ggstatsplot} plots subtitle, caption, etc. Note analysis carried {statsExpressions} package. using functions extract data frames, better using package. exception ggcorrmat() function. , data frame want, using ggcorrmat() anyway. can use correlation::correlation() function provides tidy data frames default.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/extract_stats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extracting data frames or expressions from {ggstatsplot} plots — extract_stats","text":"","code":"set.seed(123) # non-grouped plot p1 <- ggbetweenstats(mtcars, cyl, mpg) # grouped plot p2 <- grouped_ggbarstats(Titanic_full, Survived, Sex, grouping.var = Age) # extracting expressions ----------------------------- extract_subtitle(p1) #> list(italic(\"F\")[\"Welch\"](2, 18.03) == \"31.62\", italic(p) == #> \"1.27e-06\", widehat(omega[\"p\"]^2) == \"0.74\", CI[\"95%\"] ~ #> \"[\" * \"0.53\", \"1.00\" * \"]\", italic(\"n\")[\"obs\"] == \"32\") extract_caption(p1) #> list(log[e] * (BF[\"01\"]) == \"-14.92\", widehat(italic(R^\"2\"))[\"Bayesian\"]^\"posterior\" == #> \"0.71\", CI[\"95%\"]^HDI ~ \"[\" * \"0.57\", \"0.79\" * \"]\", italic(\"r\")[\"Cauchy\"]^\"JZS\" == #> \"0.71\") extract_subtitle(p2) #> [[1]] #> list(chi[\"Pearson\"]^2 * \"(\" * 1 * \")\" == \"460.87\", italic(p) == #> \"3.11e-102\", widehat(italic(\"V\"))[\"Cramer\"] == \"0.47\", CI[\"95%\"] ~ #> \"[\" * \"0.43\", \"0.51\" * \"]\", italic(\"n\")[\"obs\"] == \"2,092\") #> #> [[2]] #> list(chi[\"Pearson\"]^2 * \"(\" * 1 * \")\" == \"3.03\", italic(p) == #> \"0.08\", widehat(italic(\"V\"))[\"Cramer\"] == \"0.14\", CI[\"95%\"] ~ #> \"[\" * \"0.00\", \"0.34\" * \"]\", italic(\"n\")[\"obs\"] == \"109\") #> extract_caption(p2) #> [[1]] #> list(log[e] * (BF[\"01\"]) == \"-213.79\", widehat(italic(\"V\"))[\"Cramer\"]^\"posterior\" == #> \"0.47\", CI[\"95%\"]^ETI ~ \"[\" * \"0.43\", \"0.51\" * \"]\", italic(\"a\")[\"Gunel-Dickey\"] == #> \"1.00\") #> #> [[2]] #> list(log[e] * (BF[\"01\"]) == \"-0.03\", widehat(italic(\"V\"))[\"Cramer\"]^\"posterior\" == #> \"0.13\", CI[\"95%\"]^ETI ~ \"[\" * \"0.00\", \"0.33\" * \"]\", italic(\"a\")[\"Gunel-Dickey\"] == #> \"1.00\") #> # extracting data frames ----------------------------- extract_stats(p1) #> $subtitle_data #> # A tibble: 1 × 14 #> statistic df df.error p.value #> #> 1 31.6 2 18.0 0.00000127 #> method effectsize estimate #> #> 1 One-way analysis of means (not assuming equal variances) Omega2 0.744 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0.531 1 ncp F 32 #> #> $caption_data #> # A tibble: 6 × 17 #> term pd prior.distribution prior.location prior.scale bf10 #> #> 1 mu 1 cauchy 0 0.707 3008850. #> 2 cyl-4 1 cauchy 0 0.707 3008850. #> 3 cyl-6 0.780 cauchy 0 0.707 3008850. #> 4 cyl-8 1 cauchy 0 0.707 3008850. #> 5 sig2 1 cauchy 0 0.707 3008850. #> 6 g_cyl 1 cauchy 0 0.707 3008850. #> method log_e_bf10 effectsize estimate std.dev #> #> 1 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 2 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 3 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 4 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 5 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> 6 Bayes factors for linear models 14.9 Bayesian R-squared 0.714 0.0503 #> conf.level conf.low conf.high conf.method n.obs expression #> #> 1 0.95 0.574 0.788 HDI 32 #> 2 0.95 0.574 0.788 HDI 32 #> 3 0.95 0.574 0.788 HDI 32 #> 4 0.95 0.574 0.788 HDI 32 #> 5 0.95 0.574 0.788 HDI 32 #> 6 0.95 0.574 0.788 HDI 32 #> #> $pairwise_comparisons_data #> # A tibble: 3 × 9 #> group1 group2 statistic p.value alternative distribution p.adjust.method #> #> 1 4 6 -6.67 0.00110 two.sided q Holm #> 2 4 8 -10.7 0.0000140 two.sided q Holm #> 3 6 8 -7.48 0.000257 two.sided q Holm #> test expression #> #> 1 Games-Howell #> 2 Games-Howell #> 3 Games-Howell #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" extract_stats(p2) #> [[1]] #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 461. 1 3.11e-102 Pearson's Chi-squared test Cramer's V (adj.) #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.469 0.95 0.426 0.512 ncp chisq 2092 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.468 0.426 0.509 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 7.02e92 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 214. 2092 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 4 × 5 #> Sex Survived counts perc .label #> #> 1 Female Yes 316 74.4 74% #> 2 Male Yes 338 20.3 20% #> 3 Female No 109 25.6 26% #> 4 Male No 1329 79.7 80% #> #> $one_sample_data #> # A tibble: 2 × 19 #> Sex counts perc N statistic df p.value method effectsize estimate #> #> 1 Male 1667 79.7 (n =… 589. 1 3.87e-130 Chi-s… Pearson's… 0.511 #> 2 Female 425 20.3 (n =… 101. 1 1.01e- 23 Chi-s… Pearson's… 0.438 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" #> #> [[2]] #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize estimate #> #> 1 3.03 1 0.0818 Pearson's Chi-squared test Cramer's V (adj.) 0.137 #> conf.level conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 0.95 0 0.343 ncp chisq 109 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.131 0 0.328 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 1.03 #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 0.0313 109 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 4 × 5 #> Sex Survived counts perc .label #> #> 1 Female Yes 28 62.2 62% #> 2 Male Yes 29 45.3 45% #> 3 Female No 17 37.8 38% #> 4 Male No 35 54.7 55% #> #> $one_sample_data #> # A tibble: 2 × 19 #> Sex counts perc N statistic df p.value method effectsize estimate #> #> 1 Male 64 58.7 (n = 6… 0.562 1 0.453 Chi-s… Pearson's… 0.0933 #> 2 Female 45 41.3 (n = 4… 2.69 1 0.101 Chi-s… Pearson's… 0.237 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" #>"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Stacked bar charts with statistical tests — ggbarstats","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Bar charts categorical data statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Stacked bar charts with statistical tests — ggbarstats","text":"","code":"ggbarstats( data, x, y, counts = NULL, type = \"parametric\", paired = FALSE, results.subtitle = TRUE, label = \"percentage\", label.args = list(alpha = 1, fill = \"white\"), sample.size.label.args = list(size = 4), digits = 2L, proportion.test = results.subtitle, digits.perc = 0L, bf.message = TRUE, ratio = NULL, conf.level = 0.95, sampling.plan = \"indepMulti\", fixed.margin = \"rows\", prior.concentration = 1, title = NULL, subtitle = NULL, caption = NULL, legend.title = NULL, xlab = NULL, ylab = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Stacked bar charts with statistical tests — ggbarstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). counts variable data containing counts, NULL row represents single observation. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). sample.size.label.args Additional aesthetic arguments passed ggplot2::geom_text(). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. legend.title Title text legend. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Stacked bar charts with statistical tests — ggbarstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"contingency-table-analyses","dir":"Reference","previous_headings":"","what":"Contingency table analyses","title":"Stacked bar charts with statistical tests — ggbarstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"two-way-table","dir":"Reference","previous_headings":"","what":"two-way table","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"one-way-table","dir":"Reference","previous_headings":"","what":"one-way table","title":"Stacked bar charts with statistical tests — ggbarstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Stacked bar charts with statistical tests — ggbarstats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- ggbarstats(mtcars, x = vs, y = cyl) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 21.3 2 0.0000232 Pearson's Chi-squared test Cramer's V (adj.) #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.789 0.95 0.371 1 ncp chisq 32 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 15 #> term conf.level effectsize estimate conf.low conf.high #> #> 1 Ratio 0.95 Cramers_v 0.683 0.436 0.840 #> prior.distribution prior.location prior.scale bf10 #> #> 1 independent multinomial 0 1 30129. #> method conf.method log_e_bf10 n.obs expression #> #> 1 Bayesian contingency table analysis ETI 10.3 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 5 × 5 #> cyl vs counts perc .label #> #> 1 4 1 10 90.9 91% #> 2 6 1 4 57.1 57% #> 3 4 0 1 9.09 9% #> 4 6 0 3 42.9 43% #> 5 8 0 14 100 100% #> #> $one_sample_data #> # A tibble: 3 × 19 #> cyl counts perc N statistic df p.value method effectsize estimate #> #> 1 8 14 43.8 (n = 14) 14 1 1.83e-4 Chi-s… Pearson's… 0.707 #> 2 6 7 21.9 (n = 7) 0.143 1 7.05e-1 Chi-s… Pearson's… 0.141 #> 3 4 11 34.4 (n = 11) 7.36 1 6.66e-3 Chi-s… Pearson's… 0.633 #> # ℹ 9 more variables: conf.level , conf.low , conf.high , #> # conf.method , conf.distribution , n.obs , expression , #> # .label , .p.label #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"combination box violin plots along jittered data points -subjects designs statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"","code":"ggbetweenstats( data, x, y, type = \"parametric\", pairwise.display = \"significant\", p.adjust.method = \"holm\", effsize.type = \"unbiased\", bf.prior = 0.707, bf.message = TRUE, results.subtitle = TRUE, xlab = NULL, ylab = NULL, caption = NULL, title = NULL, subtitle = NULL, digits = 2L, var.equal = FALSE, conf.level = 0.95, nboot = 100L, tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = list(size = 5, color = \"darkred\"), centrality.label.args = list(size = 3, nudge_x = 0.4, segment.linetype = 4, min.segment.length = 0), point.args = list(position = ggplot2::position_jitterdodge(dodge.width = 0.6), alpha = 0.4, size = 3, stroke = 0, na.rm = TRUE), boxplot.args = list(width = 0.3, alpha = 0.2, na.rm = TRUE), violin.args = list(width = 0.5, alpha = 0.2, na.rm = TRUE), ggsignif.args = list(textsize = 3, tip_length = 0.01, na.rm = TRUE), ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. caption text plot caption. argument relevant bf.message = FALSE. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). var.equal logical variable indicating whether treat two variances equal. TRUE pooled variance used estimate variance otherwise Welch (Satterthwaite) approximation degrees freedom used. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.point.args, centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"centrality-measures","dir":"Reference","previous_headings":"","what":"Centrality measures","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"two-sample-tests","dir":"Reference","previous_headings":"","what":"Two-sample tests","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"one-way-anova","dir":"Reference","previous_headings":"","what":"One-way ANOVA","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects-1","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects-1","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"pairwise-comparison-tests","dir":"Reference","previous_headings":"","what":"Pairwise comparison tests","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"between-subjects-2","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"within-subjects-2","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Box/Violin plots for between-subjects comparisons — ggbetweenstats","text":"","code":"# for reproducibility set.seed(123) p <- ggbetweenstats(mtcars, am, mpg) p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 18 #> parameter1 parameter2 mean.parameter1 mean.parameter2 statistic df.error #> #> 1 mpg am 17.1 24.4 -3.77 18.3 #> p.value method alternative effectsize estimate conf.level #> #> 1 0.00137 Welch Two Sample t-test two.sided Hedges' g -1.35 0.95 #> conf.low conf.high conf.method conf.distribution n.obs expression #> #> 1 -2.17 -0.512 ncp t 32 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test -6.44 0.95 -10.1 -2.74 0.999 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 86.6 Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 4.46 32 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # modifying defaults ggbetweenstats( morley, x = Expt, y = Speed, type = \"robust\", xlab = \"The experiment number\", ylab = \"Speed-of-light measurement\" ) # you can remove a specific geom to reduce complexity of the plot ggbetweenstats( mtcars, am, wt, # to remove violin plot violin.args = list(width = 0, linewidth = 0), # to remove boxplot boxplot.args = list(width = 0), # to remove points point.args = list(alpha = 0) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Dot-and-whisker plots for regression analyses — ggcoefstats","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"Plot regression coefficients' point estimates dots confidence interval whiskers statistical details included labels. Although statistical models displayed plot may differ based class models investigated, aspects plot invariant across models: dot-whisker plot contains dot representing estimate confidence intervals (95% default). estimate can either effect sizes (tests depend F-statistic) regression coefficients (tests t-, chi^2-, z-statistic), etc. function , default, display helpful x-axis label clear estimates displayed. confidence intervals can sometimes asymmetric bootstrapping used. label attached dot provide details statistical test carried typically contain estimate, statistic, p-value. caption contain diagnostic information, available, models can useful model selection: smaller Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) values, \"better\" model . output function {ggplot2} object , thus, can modified (e.g. change themes) {ggplot2}.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"","code":"ggcoefstats( x, statistic = NULL, conf.int = TRUE, conf.level = 0.95, digits = 2L, exclude.intercept = FALSE, effectsize.type = \"eta\", meta.analytic.effect = FALSE, meta.type = \"parametric\", bf.message = TRUE, sort = \"none\", xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, only.significant = FALSE, point.args = list(size = 3, color = \"blue\", na.rm = TRUE), errorbar.args = list(height = 0, na.rm = TRUE), vline = TRUE, vline.args = list(linewidth = 1, linetype = \"dashed\"), stats.labels = TRUE, stats.label.color = NULL, stats.label.args = list(size = 3, direction = \"y\", min.segment.length = 0, na.rm = TRUE), package = \"RColorBrewer\", palette = \"Dark2\", ggtheme = ggstatsplot::theme_ggstatsplot(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"x model object tidied, tidy data frame regression model. Function internally uses parameters::model_parameters() get tidy data frame. data frame, must contain minimum two columns named term (names predictors) estimate (corresponding estimates coefficients quantities interest). statistic Relevant statistic model (\"t\", \"f\", \"z\", \"chi\") label. Relevant x data frame. conf.int Logical. Decides whether display confidence intervals error bars (Default: TRUE). conf.level Numeric deciding level confidence credible intervals (Default: 0.95). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). exclude.intercept Logical decides whether intercept excluded plot (Default: FALSE). effectsize.type es_type argument parameters::model_parameters(). Defaults \"eta\", relevant ANOVA-like objects. meta.analytic.effect Logical decides whether subtitle meta-analysis via linear (mixed-effects) models (default: FALSE). TRUE, input argument subtitle ignored. mostly relevant data frame estimates standard errors entered. meta.type Type statistics used carry random-effects meta-analysis. \"parametric\" (default), metafor::rma() used. \"robust\", metaplus::metaplus() used. \"bayes\", metaBMA::meta_random() used. bf.message Logical decides whether results running Bayesian meta-analysis assuming effect size d varies across studies standard deviation t (.e., random-effects analysis) displayed caption. Defaults TRUE. sort \"none\" (default) sort, \"ascending\" sort increasing coefficient value, \"descending\" sort decreasing coefficient value. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. input argument ignored meta.analytic.effect set TRUE. caption text plot caption. argument relevant bf.message = FALSE. .significant TRUE, stats labels significant effects shown (Default: FALSE). can helpful large number regression coefficients displayed single plot. point.args list additional aesthetic arguments passed ggplot2::geom_point(). errorbar.args Additional arguments passed geom_errorbarh() geom. Please see documentation function know arguments. vline Decides whether display vertical line (Default: \"TRUE\"). vline.args Additional arguments passed geom_vline geom. Please see documentation function know arguments. stats.labels Logical. Decides whether statistic p-values coefficient attached dot text label using {ggrepel} (Default: TRUE). stats.label.color Color labels. set NULL, colors chosen specified package (Default: \"RColorBrewer\") palette (Default: \"Dark2\"). stats.label.args Additional arguments passed ggrepel::geom_label_repel(). package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ... Additional arguments tidying method. , see parameters::model_parameters().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"case want carry meta-analysis, asked install needed packages ({metafor}, {metaplus}, {metaBMA}) unavailable. rows regression estimates either following quantities NA removed labels requested: estimate, statistic, p.value. Given rapid pace new methods added packages, recommended install development versions {easystats} packages using install_latest() function {easystats}.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"random-effects-meta-analysis","dir":"Reference","previous_headings":"","what":"Random-effects meta-analysis","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Dot-and-whisker plots for regression analyses — ggcoefstats","text":"","code":"# for reproducibility set.seed(123) library(lme4) #> Loading required package: Matrix # model object mod <- lm(formula = mpg ~ cyl * am, data = mtcars) # creating a plot p <- ggcoefstats(mod) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> NULL #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> # A tibble: 4 × 11 #> term estimate std.error conf.level conf.low conf.high statistic #> #> 1 (Intercept) 30.9 3.19 0.95 24.3 37.4 9.68 #> 2 cyl -1.98 0.449 0.95 -2.89 -1.06 -4.40 #> 3 am 10.2 4.30 0.95 1.36 19.0 2.36 #> 4 cyl:am -1.31 0.707 0.95 -2.75 0.143 -1.85 #> df.error p.value conf.method expression #> #> 1 28 1.95e-10 Wald #> 2 28 1.41e- 4 Wald #> 3 28 2.53e- 2 Wald #> 4 28 7.55e- 2 Wald #> #> $glance_data #> # A tibble: 1 × 8 #> AIC AICc BIC R2 R2_adjusted RMSE Sigma expression #> #> 1 166. 168. 173. 0.785 0.762 2.75 2.94 #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # further arguments can be passed to `parameters::model_parameters()` ggcoefstats(lmer(Reaction ~ Days + (Days | Subject), sleepstudy), effects = \"fixed\")"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualization of a correlation matrix — ggcorrmat","title":"Visualization of a correlation matrix — ggcorrmat","text":"Correlation matrix containing results pairwise correlation tests. want data frame (grouped) correlation matrix, use correlation::correlation() instead. can also grouped analysis used output dplyr::group_by().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualization of a correlation matrix — ggcorrmat","text":"","code":"ggcorrmat( data, cor.vars = NULL, cor.vars.names = NULL, matrix.type = \"upper\", type = \"parametric\", tr = 0.2, partial = FALSE, digits = 2L, sig.level = 0.05, conf.level = 0.95, bf.prior = 0.707, p.adjust.method = \"holm\", pch = \"cross\", ggcorrplot.args = list(method = \"square\", outline.color = \"black\", pch.cex = 14), package = \"RColorBrewer\", palette = \"Dark2\", colors = c(\"#E69F00\", \"white\", \"#009E73\"), ggtheme = ggstatsplot::theme_ggstatsplot(), ggplot.component = NULL, title = NULL, subtitle = NULL, caption = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualization of a correlation matrix — ggcorrmat","text":"data data frame variables specified taken. cor.vars List variables correlation matrix computed visualized. NULL (default), numeric variables data used. cor.vars.names Optional list names used cor.vars. names entered order. matrix.type Character, \"upper\" (default), \"lower\", \"full\", display full matrix, lower triangular upper triangular matrix. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. partial Can TRUE partial correlations. Bayesian partial correlations, \"full\" instead pseudo-Bayesian partial correlations (.e., Bayesian correlation based frequentist partialization) returned. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). sig.level Significance level (Default: 0.05). p-value p-value matrix bigger sig.level, corresponding correlation coefficient regarded insignificant flagged plot. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pch Decides point shape used insignificant correlation coefficients (valid insig = \"pch\"). Default: pch = \"cross\". ggcorrplot.args list additional (mostly aesthetic) arguments passed ggcorrplot::ggcorrplot() function. list avoid following arguments since already internally used: corr, method, p.mat, sig.level, ggtheme, colors, lab, pch, legend.title, digits. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). colors vector 3 colors low, mid, high correlation values. set NULL, manual specification colors turned 3 colors specified palette package selected. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Visualization of a correlation matrix — ggcorrmat","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"correlation-analyses","dir":"Reference","previous_headings":"","what":"Correlation analyses","title":"Visualization of a correlation matrix — ggcorrmat","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualization of a correlation matrix — ggcorrmat","text":"","code":"set.seed(123) library(ggcorrplot) ggcorrmat(iris)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Dot plot/chart for labeled numeric data. — ggdotplotstats","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"dot chart (described William S. Cleveland) statistical details one-sample test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"","code":"ggdotplotstats( data, x, y, xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, type = \"parametric\", test.value = 0, bf.prior = 0.707, bf.message = TRUE, effsize.type = \"g\", conf.level = 0.95, tr = 0.2, digits = 2L, results.subtitle = TRUE, point.args = list(color = \"black\", size = 3, shape = 16), centrality.plotting = TRUE, centrality.type = type, centrality.line.args = list(color = \"blue\", linewidth = 1, linetype = \"dashed\"), ggplot.component = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. y Label grouping variable. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. point.args list additional aesthetic arguments passed ggplot2::geom_point(). centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"one-sample-tests","dir":"Reference","previous_headings":"","what":"One-sample tests","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggdotplotstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Dot plot/chart for labeled numeric data. — ggdotplotstats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- ggdotplotstats( data = ggplot2::mpg, x = cty, y = manufacturer, title = \"Fuel economy data\", xlab = \"city miles per gallon\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 15 #> mu statistic df.error p.value method alternative effectsize #> #> 1 0 17.1 14 9.07e-11 One Sample t-test two.sided Hedges' g #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 4.17 0.95 2.56 5.76 ncp t 15 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test 16.3 0.95 14.1 18.4 1 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 87122783. Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 18.3 15 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":null,"dir":"Reference","previous_headings":"","what":"Histogram for distribution of a numeric variable — gghistostats","title":"Histogram for distribution of a numeric variable — gghistostats","text":"Histogram statistical details one-sample test included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Histogram for distribution of a numeric variable — gghistostats","text":"","code":"gghistostats( data, x, binwidth = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, type = \"parametric\", test.value = 0, bf.prior = 0.707, bf.message = TRUE, effsize.type = \"g\", conf.level = 0.95, tr = 0.2, digits = 2L, ggtheme = ggstatsplot::theme_ggstatsplot(), results.subtitle = TRUE, bin.args = list(color = \"black\", fill = \"grey50\", alpha = 0.7), centrality.plotting = TRUE, centrality.type = type, centrality.line.args = list(color = \"blue\", linewidth = 1, linetype = \"dashed\"), ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Histogram for distribution of a numeric variable — gghistostats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. binwidth width histogram bins. Can specified numeric value, function calculates width x. default use max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data. xlab Label x axis variable. NULL (default), variable name x used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. bin.args list additional aesthetic arguments passed stat_bin used display bins. specify binwidth argument list since already specified using dedicated argument. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Histogram for distribution of a numeric variable — gghistostats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"one-sample-tests","dir":"Reference","previous_headings":"","what":"One-sample tests","title":"Histogram for distribution of a numeric variable — gghistostats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Histogram for distribution of a numeric variable — gghistostats","text":"","code":"# for reproducibility set.seed(123) # creating a plot p <- gghistostats( data = ToothGrowth, x = len, xlab = \"Tooth length\", centrality.type = \"np\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 15 #> mu statistic df.error p.value method alternative effectsize #> #> 1 0 19.1 59 6.94e-27 One Sample t-test two.sided Hedges' g #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 2.43 0.95 1.92 2.93 ncp t 60 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 16 #> term effectsize estimate conf.level conf.low conf.high pd #> #> 1 Difference Bayesian t-test 18.7 0.95 16.7 20.7 1 #> prior.distribution prior.location prior.scale bf10 method #> #> 1 cauchy 0 0.707 4.86e23 Bayesian t-test #> conf.method log_e_bf10 n.obs expression #> #> 1 ETI 54.5 60 #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":null,"dir":"Reference","previous_headings":"","what":"Pie charts with statistical tests — ggpiestats","title":"Pie charts with statistical tests — ggpiestats","text":"Pie charts categorical data statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pie charts with statistical tests — ggpiestats","text":"","code":"ggpiestats( data, x, y = NULL, counts = NULL, type = \"parametric\", paired = FALSE, results.subtitle = TRUE, label = \"percentage\", label.args = list(direction = \"both\"), label.repel = FALSE, digits = 2L, proportion.test = results.subtitle, digits.perc = 0L, bf.message = TRUE, ratio = NULL, conf.level = 0.95, sampling.plan = \"indepMulti\", fixed.margin = \"rows\", prior.concentration = 1, title = NULL, subtitle = NULL, caption = NULL, legend.title = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pie charts with statistical tests — ggpiestats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). counts variable data containing counts, NULL row represents single observation. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). label.repel Whether labels repelled using {ggrepel} package. can helpful case overlapping labels. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. legend.title Title text legend. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Pie charts with statistical tests — ggpiestats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"contingency-table-analyses","dir":"Reference","previous_headings":"","what":"Contingency table analyses","title":"Pie charts with statistical tests — ggpiestats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"two-way-table","dir":"Reference","previous_headings":"","what":"two-way table","title":"Pie charts with statistical tests — ggpiestats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"one-way-table","dir":"Reference","previous_headings":"","what":"one-way table","title":"Pie charts with statistical tests — ggpiestats","text":"Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Pie charts with statistical tests — ggpiestats","text":"","code":"# for reproducibility set.seed(123) # one sample goodness of fit proportion test p <- ggpiestats(mtcars, vs) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 13 #> statistic df p.value method effectsize #> #> 1 0.5 1 0.480 Chi-squared test for given probabilities Pearson's C #> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs #> #> 1 0.124 0.95 0 0.426 ncp chisq 32 #> expression #> #> 1 #> #> $caption_data #> # A tibble: 1 × 4 #> bf10 prior.scale method expression #> #> 1 0.180 1 Bayesian one-way contingency table analysis #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> # A tibble: 2 × 4 #> vs counts perc .label #> #> 1 1 14 43.8 44% #> 2 0 18 56.2 56% #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # association test (or contingency table analysis) ggpiestats(mtcars, vs, cyl)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Scatterplot with marginal distributions and statistical results — ggscatterstats","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"Scatterplots {ggplot2} combined marginal distributions plots statistical details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"","code":"ggscatterstats( data, x, y, type = \"parametric\", conf.level = 0.95, bf.prior = 0.707, bf.message = TRUE, tr = 0.2, digits = 2L, results.subtitle = TRUE, label.var = NULL, label.expression = NULL, marginal = TRUE, point.args = list(size = 3, alpha = 0.4, stroke = 0), point.width.jitter = 0, point.height.jitter = 0, point.label.args = list(size = 3, max.overlaps = 1e+06), smooth.line.args = list(linewidth = 1.5, color = \"blue\", method = \"lm\", formula = y ~ x), xsidehistogram.args = list(fill = \"#009E73\", color = \"black\", na.rm = TRUE), ysidehistogram.args = list(fill = \"#D55E00\", color = \"black\", na.rm = TRUE), xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x column data containing explanatory variable plotted x-axis. y column data containing response (outcome) variable plotted y-axis. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. label.var Variable use points labels entered symbol (e.g. var1). label.expression expression evaluating logical vector determines subset data points label (e.g. y < 4 & z < 20). using argument purrr::pmap(), provide quoted expression (e.g. quote(y < 4 & z < 20)). marginal Decides whether marginal distributions plotted axes using {ggside} functions. default TRUE. package {ggside} must already installed user. point.args list additional aesthetic arguments passed ggplot2::geom_point(). point.width.jitter, point.height.jitter Degree jitter x y direction, respectively. Defaults 0 (0%) resolution data. Note jitter specified point.args information passed two different geoms: one displaying points displaying *labels points. point.label.args list additional aesthetic arguments passed ggrepel::geom_label_repel()geom used display labels. smooth.line.args list additional aesthetic arguments passed geom_smooth geom used display regression line. xsidehistogram.args, ysidehistogram.args list arguments passed respective geom_s {ggside} package change marginal distribution histograms plots. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"plot uses ggrepel::geom_label_repel() attempt keep labels -lapping largest degree possible. consequence plot times slow massively (plot file grow size) lot labels overlap.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"correlation-analyses","dir":"Reference","previous_headings":"","what":"Correlation analyses","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details Hypothesis testing Effect size estimation","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Scatterplot with marginal distributions and statistical results — ggscatterstats","text":"","code":"set.seed(123) # creating a plot p <- ggscatterstats( iris, x = Sepal.Width, y = Petal.Length, label.var = Species, label.expression = Sepal.Length > 7.6 ) + ggplot2::geom_rug(sides = \"b\") #> Registered S3 method overwritten by 'ggside': #> method from #> +.gg ggplot2 # looking at the plot p #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> parameter1 parameter2 effectsize estimate conf.level conf.low #> #> 1 Sepal.Width Petal.Length Pearson correlation -0.428 0.95 -0.551 #> conf.high statistic df.error p.value method n.obs #> #> 1 -0.288 -5.77 148 0.0000000451 Pearson correlation 150 #> conf.method expression #> #> 1 normal #> #> $caption_data #> # A tibble: 1 × 17 #> parameter1 parameter2 effectsize estimate conf.level #> #> 1 Sepal.Width Petal.Length Bayesian Pearson correlation -0.422 0.95 #> conf.low conf.high pd rope.percentage prior.distribution prior.location #> #> 1 -0.551 -0.290 1 0 beta 1.41 #> prior.scale bf10 method n.obs conf.method expression #> #> 1 1.41 312665. Bayesian Pearson correlation 150 HDI #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":null,"dir":"Reference","previous_headings":"","what":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"{ggstatsplot} extension {ggplot2} package. creates graphics details statistical tests included plots . provides easier API generate information-rich plots statistical analysis continuous (violin plots, scatterplots, histograms, dot plots, dot--whisker plots) categorical (pie bar charts) data. Currently, supports common types statistical tests: parametric, nonparametric, robust, Bayesian versions t-test/ANOVA, correlation analyses, contingency table analysis, meta-analysis, regression analyses.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"ggstatsplot main functions : ggbetweenstats() function produce information-rich comparison plot different groups conditions {ggplot2} details statistical tests subtitle. ggwithinstats() function produce information-rich comparison plot within different groups conditions {ggplot2} details statistical tests subtitle. ggscatterstats() function produce {ggplot2} scatterplots along marginal distribution plots {ggside} package details statistical tests subtitle. ggpiestats() function produce pie chart details statistical tests subtitle. ggbarstats() function produce stacked bar chart details statistical tests subtitle. gghistostats() function produce histogram single variable results one sample test displayed subtitle. ggdotplotstats() function produce Cleveland-style dot plots/charts single variable labels results one sample test displayed subtitle. ggcorrmat() function visualize correlation matrix. ggcoefstats() function visualize results regression analyses. combine_plots() helper function combine multiple {ggstatsplot} plots using patchwork::wrap_plots(). References: Patil (2021) doi:10.21105/joss.03236 . documentation, see dedicated Website.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggstatsplot-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"ggstatsplot: 'ggplot2' Based Plots with Statistical Details — ggstatsplot-package","text":"Maintainer: Indrajeet Patil patilindrajeet.science@gmail.com (ORCID) [copyright holder] contributors: Chuck Powell ibecav@gmail.com (ORCID) [contributor]","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Box/Violin plots for repeated measures comparisons — ggwithinstats","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"combination box violin plots along raw (unjittered) data points within-subjects designs statistical details included plot subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"","code":"ggwithinstats( data, x, y, type = \"parametric\", pairwise.display = \"significant\", p.adjust.method = \"holm\", effsize.type = \"unbiased\", bf.prior = 0.707, bf.message = TRUE, results.subtitle = TRUE, xlab = NULL, ylab = NULL, caption = NULL, title = NULL, subtitle = NULL, digits = 2L, conf.level = 0.95, nboot = 100L, tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = list(size = 5, color = \"darkred\"), centrality.label.args = list(size = 3, nudge_x = 0.4, segment.linetype = 4), centrality.path = TRUE, centrality.path.args = list(linewidth = 1, color = \"red\", alpha = 0.5), point.args = list(size = 3, alpha = 0.5, na.rm = TRUE), point.path = TRUE, point.path.args = list(alpha = 0.5, linetype = \"dashed\"), boxplot.args = list(width = 0.2, alpha = 0.5, na.rm = TRUE), violin.args = list(width = 0.5, alpha = 0.2, na.rm = TRUE), ggsignif.args = list(textsize = 3, tip_length = 0.01, na.rm = TRUE), ggtheme = ggstatsplot::theme_ggstatsplot(), package = \"RColorBrewer\", palette = \"Dark2\", ggplot.component = NULL, ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. caption text plot caption. argument relevant bf.message = FALSE. title text plot title. subtitle text plot subtitle. work results.subtitle = FALSE. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. centrality.point.args, centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. centrality.path.args, point.path.args list additional aesthetic arguments passed ggplot2::geom_path() connecting raw data points mean points. point.args list additional aesthetic arguments passed ggplot2::geom_point(). point.path, centrality.path Logical decides whether individual data points means, respectively, connected using ggplot2::geom_path(). default TRUE. Note point.path argument relevant two groups (.e., case t-test). case large number data points, advisable set point.path = FALSE lines can overwhelm plot. boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. package, palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ... Currently ignored.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"centrality-measures","dir":"Reference","previous_headings":"","what":"Centrality measures","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"two-sample-tests","dir":"Reference","previous_headings":"","what":"Two-sample tests","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"one-way-anova","dir":"Reference","previous_headings":"","what":"One-way ANOVA","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects-1","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects-1","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"pairwise-comparison-tests","dir":"Reference","previous_headings":"","what":"Pairwise comparison tests","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"table provides summary : statistical test carried inferential statistics type effect size estimate measure uncertainty estimate functions used internally compute details","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"between-subjects-2","dir":"Reference","previous_headings":"","what":"between-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"within-subjects-2","dir":"Reference","previous_headings":"","what":"within-subjects","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"Hypothesis testing Effect size estimation supported.","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Box/Violin plots for repeated measures comparisons — ggwithinstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # create a plot p <- ggwithinstats( data = filter(bugs_long, condition %in% c(\"HDHF\", \"HDLF\")), x = condition, y = desire, type = \"np\" ) # looking at the plot p # extracting details from statistical tests extract_stats(p) #> $subtitle_data #> # A tibble: 1 × 14 #> parameter1 parameter2 statistic p.value method alternative #> #> 1 desire condition 1796 0.000430 Wilcoxon signed rank test two.sided #> effectsize estimate conf.level conf.low conf.high conf.method n.obs #> #> 1 r (rank biserial) 0.487 0.95 0.285 0.648 normal 90 #> expression #> #> 1 #> #> $caption_data #> NULL #> #> $pairwise_comparisons_data #> NULL #> #> $descriptive_data #> NULL #> #> $one_sample_data #> NULL #> #> $tidy_data #> NULL #> #> $glance_data #> NULL #> #> attr(,\"class\") #> [1] \"ggstatsplot_stats\" \"list\" # modifying defaults ggwithinstats( data = bugs_long, x = condition, y = desire, type = \"robust\" ) # you can remove a specific geom by setting `width` to `0` for that geom ggbetweenstats( data = bugs_long, x = condition, y = desire, # to remove violin plot violin.args = list(width = 0, linewidth = 0), # to remove boxplot boxplot.args = list(width = 0), # to remove points point.args = list(alpha = 0) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped bar charts with statistical tests — grouped_ggbarstats","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"Helper function ggstatsplot::ggbarstats() apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"","code":"grouped_ggbarstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggbarstats sample.size.label.args Additional aesthetic arguments passed ggplot2::geom_text(). x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). legend.title Title text legend. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). counts variable data containing counts, NULL row represents single observation. ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbarstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped bar charts with statistical tests — grouped_ggbarstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # let's create a smaller data frame first diamonds_short <- ggplot2::diamonds %>% filter(cut %in% c(\"Very Good\", \"Ideal\")) %>% filter(clarity %in% c(\"SI1\", \"SI2\", \"VS1\", \"VS2\")) %>% sample_frac(size = 0.05) grouped_ggbarstats( data = diamonds_short, x = color, y = clarity, grouping.var = cut, plotgrid.args = list(nrow = 2) )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"Helper function ggstatsplot::ggbetweenstats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"","code":"grouped_ggbetweenstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggbetweenstats xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). centrality.point.args,centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). var.equal logical variable indicating whether treat two variances equal. TRUE pooled variance used estimate variance otherwise Welch (Satterthwaite) approximation degrees freedom used. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggbetweenstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Violin plots for group or condition comparisons in between-subjects designs repeated across all levels of a grouping variable. — grouped_ggbetweenstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) grouped_ggbetweenstats( data = filter(ggplot2::mpg, drv != \"4\"), x = year, y = hwy, grouping.var = drv ) # modifying individual plots using `ggplot.component` argument grouped_ggbetweenstats( data = filter( movies_long, genre %in% c(\"Action\", \"Comedy\"), mpaa %in% c(\"R\", \"PG\") ), x = genre, y = rating, grouping.var = mpaa, ggplot.component = scale_y_continuous( breaks = seq(1, 9, 1), limits = (c(1, 9)) ) ) #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale. #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"Helper function ggstatsplot::ggcorrmat() apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"","code":"grouped_ggcorrmat( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"data data frame variables specified taken. ... Arguments passed ggcorrmat cor.vars List variables correlation matrix computed visualized. NULL (default), numeric variables data used. cor.vars.names Optional list names used cor.vars. names entered order. partial Can TRUE partial correlations. Bayesian partial correlations, \"full\" instead pseudo-Bayesian partial correlations (.e., Bayesian correlation based frequentist partialization) returned. matrix.type Character, \"upper\" (default), \"lower\", \"full\", display full matrix, lower triangular upper triangular matrix. sig.level Significance level (Default: 0.05). p-value p-value matrix bigger sig.level, corresponding correlation coefficient regarded insignificant flagged plot. colors vector 3 colors low, mid, high correlation values. set NULL, manual specification colors turned 3 colors specified palette package selected. pch Decides point shape used insignificant correlation coefficients (valid insig = \"pch\"). Default: pch = \"cross\". ggcorrplot.args list additional (mostly aesthetic) arguments passed ggcorrplot::ggcorrplot() function. list avoid following arguments since already internally used: corr, method, p.mat, sig.level, ggtheme, colors, lab, pch, legend.title, digits. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggcorrmat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualization of a correlalogram (or correlation matrix) for all levels of a grouping variable — grouped_ggcorrmat","text":"","code":"set.seed(123) grouped_ggcorrmat( data = iris, grouping.var = Species, type = \"robust\", p.adjust.method = \"holm\", plotgrid.args = list(ncol = 1L), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"Helper function ggstatsplot::ggdotplotstats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"","code":"grouped_ggdotplotstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggdotplotstats y Label grouping variable. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. x numeric variable data frame data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). xlab Label x axis variable. NULL (default), variable name x used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. ylab Labels y axis variable. NULL (default), variable name y used. point.args list additional aesthetic arguments passed ggplot2::geom_point(). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggdotplotstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped histograms for distribution of a labeled numeric variable — grouped_ggdotplotstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) # removing factor level with very few no. of observations df <- filter(ggplot2::mpg, cyl %in% c(\"4\", \"6\", \"8\")) # plot grouped_ggdotplotstats( data = df, x = cty, y = manufacturer, grouping.var = cyl, test.value = 15.5 )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"Helper function ggstatsplot::gghistostats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"","code":"grouped_gghistostats( data, x, grouping.var, binwidth = NULL, plotgrid.args = list(), annotation.args = list(), ... )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. x numeric variable data frame data. grouping.var single grouping variable. binwidth width histogram bins. Can specified numeric value, function calculates width x. default use max(x) - min(x) / sqrt(N). always check value explore multiple widths find best illustrate stories data. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation(). ... Arguments passed gghistostats bin.args list additional aesthetic arguments passed stat_bin used display bins. specify binwidth argument list since already specified using dedicated argument. centrality.line.args list additional aesthetic arguments passed ggplot2::geom_line() used display lines corresponding centrality parameter. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. test.value number indicating true value mean (Default: 0). digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. effsize.type Type effect size needed parametric tests. argument can \"d\" (Cohen's d) \"g\" (Hedge's g). xlab Label x axis variable. NULL (default), variable name x used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_gghistostats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped histograms for distribution of a numeric variable — grouped_gghistostats","text":"","code":"# for reproducibility set.seed(123) # plot grouped_gghistostats( data = iris, x = Sepal.Length, test.value = 5, grouping.var = Species, plotgrid.args = list(nrow = 1), annotation.args = list(tag_levels = \"i\") )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":null,"dir":"Reference","previous_headings":"","what":"Grouped pie charts with statistical tests — grouped_ggpiestats","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"Helper function ggstatsplot::ggpiestats apply function across multiple levels given factor combining resulting plots using ggstatsplot::combine_plots.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"","code":"grouped_ggpiestats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggpiestats x variable use rows contingency table. Please note empty factor levels variable, dropped. y variable use columns contingency table. Please note empty factor levels variable, dropped. Default NULL. NULL, one-sample proportion test (goodness fit test) run x variable. Otherwise appropriate association test run. argument can NULL ggbarstats(). proportion.test Decides whether proportion test x variable carried level y. Defaults results.subtitle. ggbarstats(), p-values test displayed. digits.perc Numeric decides number decimal places percentage labels (Default: 0L). label Character decides information needs displayed label pie slice. Possible options \"percentage\" (default), \"counts\", \"\". label.args Additional aesthetic arguments passed ggplot2::geom_label(). label.repel Whether labels repelled using {ggrepel} package. can helpful case overlapping labels. legend.title Title text legend. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. paired Logical indicating whether data came within-subjects repeated measures design study (Default: FALSE). counts variable data containing counts, NULL row represents single observation. ratio vector proportions: expected proportions proportion test (sum 1). Default NULL, means null equal theoretical proportions across levels nominal variable. E.g., ratio = c(0.5, 0.5) two levels, ratio = c(0.25, 0.25, 0.25, 0.25) four levels, etc. sampling.plan Character describing sampling plan. Possible options: \"indepMulti\" (independent multinomial; default) \"poisson\" \"jointMulti\" (joint multinomial) \"hypergeom\" (hypergeometric). , see BayesFactor::contingencyTableBF(). fixed.margin independent multinomial sampling plan, margin fixed (\"rows\" \"cols\"). Defaults \"rows\". prior.concentration Specifies prior concentration parameter, set 1 default. indexes expected deviation null hypothesis alternative, corresponds Gunel Dickey's (1974) \"\" parameter. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggpiestats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Grouped pie charts with statistical tests — grouped_ggpiestats","text":"","code":"set.seed(123) # grouped one-sample proportion test grouped_ggpiestats(mtcars, x = cyl, grouping.var = am)"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"Grouped scatterplots {ggplot2} combined marginal distribution plots statistical details added subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"","code":"grouped_ggscatterstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggscatterstats label.var Variable use points labels entered symbol (e.g. var1). label.expression expression evaluating logical vector determines subset data points label (e.g. y < 4 & z < 20). using argument purrr::pmap(), provide quoted expression (e.g. quote(y < 4 & z < 20)). point.label.args list additional aesthetic arguments passed ggrepel::geom_label_repel()geom used display labels. smooth.line.args list additional aesthetic arguments passed geom_smooth geom used display regression line. marginal Decides whether marginal distributions plotted axes using {ggside} functions. default TRUE. package {ggside} must already installed user. point.width.jitter,point.height.jitter Degree jitter x y direction, respectively. Defaults 0 (0%) resolution data. Note jitter specified point.args information passed two different geoms: one displaying points displaying *labels points. xsidehistogram.args,ysidehistogram.args list arguments passed respective geom_s {ggside} package change marginal distribution histograms plots. x column data containing explanatory variable plotted x-axis. y column data containing response (outcome) variable plotted y-axis. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. point.args list additional aesthetic arguments passed ggplot2::geom_point(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggscatterstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Scatterplot with marginal distributions for all levels of a grouping variable — grouped_ggscatterstats","text":"","code":"# to ensure reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) grouped_ggscatterstats( data = filter(movies_long, genre == \"Comedy\" | genre == \"Drama\"), x = length, y = rating, type = \"robust\", grouping.var = genre, ggplot.component = list(geom_rug(sides = \"b\")) ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # using labeling # (also show how to modify basic plot from within function call) grouped_ggscatterstats( data = filter(ggplot2::mpg, cyl != 5), x = displ, y = hwy, grouping.var = cyl, type = \"robust\", label.var = manufacturer, label.expression = hwy > 25 & displ > 2.5, ggplot.component = scale_y_continuous(sec.axis = dup_axis()) ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. # labeling without expression grouped_ggscatterstats( data = filter(movies_long, rating == 7, genre %in% c(\"Drama\", \"Comedy\")), x = budget, y = length, grouping.var = genre, bf.message = FALSE, label.var = \"title\", annotation.args = list(tag_levels = \"a\") ) #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`. #> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":null,"dir":"Reference","previous_headings":"","what":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"combined plot comparison plot created levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"","code":"grouped_ggwithinstats( data, ..., grouping.var, plotgrid.args = list(), annotation.args = list() )"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"data data frame (tibble) variables specified taken. data types (e.g., matrix,table, array, etc.) accepted. Additionally, grouped data frames {dplyr} ungrouped entered data. ... Arguments passed ggwithinstats point.path,centrality.path Logical decides whether individual data points means, respectively, connected using ggplot2::geom_path(). default TRUE. Note point.path argument relevant two groups (.e., case t-test). case large number data points, advisable set point.path = FALSE lines can overwhelm plot. centrality.path.args,point.path.args list additional aesthetic arguments passed ggplot2::geom_path() connecting raw data points mean points. xlab Label x axis variable. NULL (default), variable name x used. ylab Labels y axis variable. NULL (default), variable name y used. p.adjust.method Adjustment method p-values multiple comparisons. Possible methods : \"holm\" (default), \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". pairwise.display Decides pairwise comparisons display. Available options : \"significant\" (abbreviation accepted: \"s\") \"non-significant\" (abbreviation accepted: \"ns\") \"\" can use argument make sure plot uber-cluttered multiple groups compared scores pairwise comparisons displayed. set \"none\", pairwise comparisons displayed. bf.message Logical decides whether display Bayes Factor favor null hypothesis. argument relevant parametric test (Default: TRUE). results.subtitle Decides whether results statistical tests displayed subtitle (Default: TRUE). set FALSE, plot returned. subtitle text plot subtitle. work results.subtitle = FALSE. caption text plot caption. argument relevant bf.message = FALSE. centrality.plotting Logical decides whether centrality tendency measure displayed point label (Default: TRUE). Function decides central tendency measure show depending type argument. mean parametric statistics median non-parametric statistics trimmed mean robust statistics MAP estimator Bayesian statistics want default centrality parameter, can specify using centrality.type argument. centrality.type Decides centrality parameter displayed. default choose type argument. can specify : \"parameteric\" (mean) \"nonparametric\" (median) robust (trimmed mean) bayes (MAP estimator) Just type argument, abbreviations also accepted. point.args list additional aesthetic arguments passed ggplot2::geom_point(). boxplot.args list additional aesthetic arguments passed ggplot2::geom_boxplot(). violin.args list additional aesthetic arguments passed ggplot2::geom_violin(). ggplot.component ggplot component added plot prepared {ggstatsplot}. argument primarily helpful grouped_ variants primary functions. Default NULL. argument entered {ggplot2} function list {ggplot2} functions. package,palette Name package given palette extracted. available palettes packages can checked running View(paletteer::palettes_d_names). centrality.point.args,centrality.label.args list additional aesthetic arguments passed ggplot2::geom_point() ggrepel::geom_label_repel() geoms, involved mean plotting. ggsignif.args list additional aesthetic arguments passed ggsignif::geom_signif(). ggtheme {ggplot2} theme. Default value theme_ggstatsplot(). {ggplot2} themes (e.g., ggplot2::theme_bw()), themes extension packages allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.). note sometimes themes remove details {ggstatsplot} plots typically contains. example, relevant, ggbetweenstats() shows details multiple comparison test label secondary Y-axis. themes (e.g. ggthemes::theme_fivethirtyeight()) remove secondary Y-axis thus details well. x grouping (independent) variable data. case repeated measures within-subjects design, subject.id argument available explicitly specified, function assumes data already sorted id user creates internal identifier. data sorted, results can inaccurate two levels x NAs present. data expected sorted user subject-1, subject-2, ..., pattern. y response (outcome dependent) variable data. type character specifying type statistical approach: \"parametric\" \"nonparametric\" \"robust\" \"bayes\" can specify just initial letter. digits Number digits rounding significant figures. May also \"signif\" return significant figures \"scientific\" return scientific notation. Control number digits adding value suffix, e.g. digits = \"scientific4\" scientific notation 4 decimal places, digits = \"signif5\" 5 significant figures (see also signif()). conf.level Scalar 0 1 (default: 95% confidence/credible intervals, 0.95). NULL, confidence intervals computed. effsize.type Type effect size needed parametric tests. argument can \"eta\" (partial eta-squared) \"omega\" (partial omega-squared). bf.prior number 0.5 2 (default 0.707), prior width use calculating Bayes factors posterior estimates. addition numeric arguments, several named values also recognized: \"medium\", \"wide\", \"ultrawide\", corresponding r scale values 1/2, sqrt(2)/2, 1, respectively. case ANOVA, value corresponds scale fixed effects. tr Trim level mean carrying robust tests. case error, try reducing value tr, default set 0.2. Lowering value might help. nboot Number bootstrap samples computing confidence interval effect size (Default: 100L). grouping.var single grouping variable. plotgrid.args list additional arguments passed patchwork::wrap_plots(), except guides argument already separately specified . annotation.args list additional arguments passed patchwork::plot_annotation().","code":""},{"path":[]},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/grouped_ggwithinstats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Violin plots for group or condition comparisons in within-subjects designs repeated across all levels of a grouping variable. — grouped_ggwithinstats","text":"","code":"# for reproducibility set.seed(123) library(dplyr, warn.conflicts = FALSE) library(ggplot2) # the most basic function call grouped_ggwithinstats( data = filter(bugs_long, condition %in% c(\"HDHF\", \"HDLF\")), x = condition, y = desire, grouping.var = gender, type = \"np\", # additional modifications for **each** plot using `{ggplot2}` functions ggplot.component = scale_y_continuous(breaks = seq(0, 10, 1), limits = c(0, 10)) ) #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale. #> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale."},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Edgar Anderson's Iris Data in long format. — iris_long","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"Edgar Anderson's Iris Data long format.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"","code":"iris_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"data frame 600 rows 5 variables id. Dummy identity number flower (150 flowers total). Species. species Iris setosa, versicolor, virginica. condition. Factor giving detailed description attribute (Four levels: \"Petal.Length\", \"Petal.Width\", \"Sepal.Length\", \"Sepal.Width\"). attribute. attribute measured (\"Sepal\" \"Pepal\"). measure. aspect attribute measured (\"Length\" \"Width\"). value. Value measurement.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"famous (Fisher's Anderson's) iris data set gives measurements centimeters variables sepal length width petal length width, respectively, 50 flowers 3 species iris. species Iris setosa, versicolor, virginica. modified dataset {datasets} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/iris_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Edgar Anderson's Iris Data in long format. — iris_long","text":"","code":"dim(iris_long) #> [1] 600 6 head(iris_long) #> # A tibble: 6 × 6 #> id Species condition attribute measure value #> #> 1 1 setosa Sepal.Length Sepal Length 5.1 #> 2 2 setosa Sepal.Length Sepal Length 4.9 #> 3 3 setosa Sepal.Length Sepal Length 4.7 #> 4 4 setosa Sepal.Length Sepal Length 4.6 #> 5 5 setosa Sepal.Length Sepal Length 5 #> 6 6 setosa Sepal.Length Sepal Length 5.4 dplyr::glimpse(iris_long) #> Rows: 600 #> Columns: 6 #> $ id 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1… #> $ Species setosa, setosa, setosa, setosa, setosa, setosa, setosa, seto… #> $ condition Sepal.Length, Sepal.Length, Sepal.Length, Sepal.Length, Sepa… #> $ attribute Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepa… #> $ measure Length, Length, Length, Length, Length, Length, Length, Leng… #> $ value 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, …"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Movie information and user ratings from IMDB.com (long format). — movies_long","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"Movie information user ratings IMDB.com (long format).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"","code":"movies_long"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"data frame 1,579 rows 8 variables title. Title movie. year. Year release. budget. Total budget (known) US dollars length. Length minutes. rating. Average IMDB user rating. votes. Number IMDB users rated movie. mpaa. MPAA rating. genre. Different genres movies (action, animation, comedy, drama, documentary, romance, short).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"https://CRAN.R-project.org/package=ggplot2movies","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"Modified dataset {ggplot2movies} package. internet movie database (IMDB) website devoted collecting movie data supplied studios fans. claims biggest movie database web run amazon.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/movies_long.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Movie information and user ratings from IMDB.com (long format). — movies_long","text":"","code":"dim(movies_long) #> [1] 1579 8 head(movies_long) #> # A tibble: 6 × 8 #> title year length budget rating votes mpaa genre #> #> 1 Shawshank Redemption, The 1994 142 25 9.1 149494 R Drama #> 2 Lord of the Rings: The Return o… 2003 251 94 9 103631 PG-13 Acti… #> 3 Lord of the Rings: The Fellowsh… 2001 208 93 8.8 157608 PG-13 Acti… #> 4 Lord of the Rings: The Two Towe… 2002 223 94 8.8 114797 PG-13 Acti… #> 5 Pulp Fiction 1994 168 8 8.8 132745 R Drama #> 6 Schindler's List 1993 195 25 8.8 97667 R Drama dplyr::glimpse(movies_long) #> Rows: 1,579 #> Columns: 8 #> $ title \"Shawshank Redemption, The\", \"Lord of the Rings: The Return of … #> $ year 1994, 2003, 2001, 2002, 1994, 1993, 1977, 1980, 1968, 2002, 196… #> $ length 142, 251, 208, 223, 168, 195, 125, 129, 158, 135, 93, 113, 108,… #> $ budget 25.0, 94.0, 93.0, 94.0, 8.0, 25.0, 11.0, 18.0, 5.0, 3.3, 1.8, 5… #> $ rating 9.1, 9.0, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.7, 8.7, 8.7, 8.7, 8.6… #> $ votes 149494, 103631, 157608, 114797, 132745, 97667, 134640, 103706, … #> $ mpaa R, PG-13, PG-13, PG-13, R, R, PG, PG, PG-13, R, PG, R, R, R, R,… #> $ genre Drama, Action, Action, Action, Drama, Drama, Action, Action, Dr…"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. statsExpressions %>%, pairwise_comparisons","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Default theme used in {ggstatsplot} — theme_ggstatsplot","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"Common theme used across plots generated {ggstatsplot} assumed author aesthetically pleasing user. theme wrapper around ggplot2::theme_bw(). {ggstatsplot} functions ggtheme parameter let choose different theme.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"","code":"theme_ggstatsplot()"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"ggplot object.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/reference/theme_ggstatsplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Default theme used in {ggstatsplot} — theme_ggstatsplot","text":"","code":"library(ggplot2) ggplot(mtcars, aes(wt, mpg)) + geom_point() + theme_ggstatsplot()"},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-01259000","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.5.9000","title":"ggstatsplot 0.12.5.9000","text":"N.B. statistical analysis ggstatsplot carried statsExpressions. Thus, see changes related statistical expressions, read NEWS package: https://indrajeetpatil.github.io/statsExpressions/news/index.html","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-12-5-9000","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.12.5.9000","text":"minimum needed R version now bumped R 4.3.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0125","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.5","title":"ggstatsplot 0.12.5","text":"CRAN release: 2024-11-01","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.5","text":"extract_stats() returns list class ggstatsplot_stats contains statistical summaries expressions given plot. extract_stats(), extract_subtitle(), extract_caption() now works box grouped plots well.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-12-5","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.12.5","text":"ggpiestats() ggbarstats() now respect ratio() argument proportion tests run case two-way contingency tables (#818).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.5","text":"Unused dataset removed: bugs_wide.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0124","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.4","title":"ggstatsplot 0.12.4","text":"CRAN release: 2024-07-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.4","text":"feature superimpose normality curve histogram (gghistostats()) removed. feature always felt like ad hoc addition plot, nothing key statistical analysis question (checking normality distribution).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.4","text":"Updates code fix warnings coming via updates easystats packages.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-12-4","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.12.4","text":"Empty groups factors longer dropped ggpiestats() ggbarstats() (#935).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0123","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.3","title":"ggstatsplot 0.12.3","text":"CRAN release: 2024-04-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-12-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.12.3","text":"cryptic useful parameter k renamed digits improve discoverability. consistent functions, ggpiestats() ggbarstats() now default two-sided alternative hypothesis.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0122","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.2","title":"ggstatsplot 0.12.2","text":"CRAN release: 2024-01-14 user-visible changes. Maintenance-release.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0121","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.1","title":"ggstatsplot 0.12.1","text":"CRAN release: 2023-09-20","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-12-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.12.1","text":"Maintenance updates changes upstream dependencies. ggbarstats() gains sample.size.label.args parameter pass additional arguments ggplot2::geom_text().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0120","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.12.0","title":"ggstatsplot 0.12.0","text":"CRAN release: 2023-08-07","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-12-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.12.0","text":"internally consistent, plot.type argument removed ggbetweenstats(), since argument exists ggwithinstats(). argument also redundant. Since removing specific geom straightforward using *.args arguments. Examples two functions illustrate . ggbetweenstats() ggwithinstats() retire pairwise.comparisons argument since redundant. order turn showing pairwise comparisons, can now use pairwise.display = \"none\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-12-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.12.0","text":"ggbetweenstats() gets boxplot.args argument pass additional arguments underlying geom function. also fixes regression introduced 0.11.1 release outlier points displayed along box plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0111","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.11.1","title":"ggstatsplot 0.11.1","text":"CRAN release: 2023-04-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-11-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.11.1","text":"outlier tagging functionality ggbetweenstats() ggwithinstats() removed. crude useful reliable, users instead prefer informative methods (e.g. performance::check_outliers()).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-11-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.11.1","text":"Fix failures due changes parameters.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0110","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.11.0","title":"ggstatsplot 0.11.0","text":"CRAN release: 2023-02-15","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-11-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.11.0","text":"minimum needed R version now bumped R 4.1 crucial dependency (pbkrtest) requires R version.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-11-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.11.0","text":"Maintenance release catch ggplot2 easystats updates.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0100","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.10.0","title":"ggstatsplot 0.10.0","text":"CRAN release: 2022-11-27","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.10.0","text":"output parameter functions removed. functions now return plot, contains necessary details previously extracted using output argument. can extract necessary details (including expressions containing statistical details) plot using extract_stats() function. two additional helpers get expressions: extract_subtitle() extract_caption().","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.10.0","text":"xfill yfill arguments ggscatterstats() removed. can specify aesthetic modifications side histograms scatter plot using xsidehistogram.args ysidehistogram.args arguments. Updates changes made latest ggplot2 release (3.4.0).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-095","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.5","title":"ggstatsplot 0.9.5","text":"CRAN release: 2022-10-16","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.5","text":"Due changes underlying API parameters, effsize argument renamed effectsize.type. Removes unnecessary re-exports tidyverse operators.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.5","text":"Fixes tests changes dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-094","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.4","title":"ggstatsplot 0.9.4","text":"CRAN release: 2022-08-11","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.4","text":"Internal housekeeping adjust changes upstream dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-093","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.3","title":"ggstatsplot 0.9.3","text":"CRAN release: 2022-05-27","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-3","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.3","text":"Hot fix release correct failing example CRAN daily checks.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-092","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.2","title":"ggstatsplot 0.9.2","text":"CRAN release: 2022-05-21","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.2","text":"pairwise_comparions() function implementation now lives statsExpressions package, although continue exported ggstatsplot package. details pairwise test ggbetweenstats() ggwithinstats() functions now displayed label secondary axis. Previously, information displayed caption. Given caption already contained Bayesian test details, becoming difficult stack different expressions top . avoid unnecessary code complexity also avoid crowded caption, decision made. Additionally, pairwise test label slightly abbreviated, label significance bars. done let text overwhelm numeric values, latter important.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-091","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.1","title":"ggstatsplot 0.9.1","text":"CRAN release: 2022-01-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.1","text":"Moves {PMCMRplus} package Imports Suggests. , , user, wish use pairwise comparisons ggbetweenstats() ggwithinstats(), need download package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.1","text":"keep documentation maintainable, number vignettes either removed longer evaluated code reported.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-090","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.9.0","title":"ggstatsplot 0.9.0","text":"CRAN release: 2021-10-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-9-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.9.0","text":"pairwise_comparisons() function carrying one-way pairwise comparisons now moved ggstatsplot {pairwiseComparisons} package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.9.0","text":"number effect size estimates confidence intervals changed due respective changes made effectsize package version 0.5 release. full details changes, see: https://easystats.github.io/effectsize/news/index.html reason, effect size one-way contingency table changed Cramer’s V Pearson’s C.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.9.0","text":"plotting marginal distributions ggscatterstats, ggstatsplot now relies ggside package instead ggExtra. done remove glaring inconsistency API. functions ggstatsplot produced ggplot objects modified ggplot2 functions, except ggscatterstats, led lot confusion among users (e.g. #28). change gets rid inconsistency. comes cost: marginal.type argument lets change type marginal distribution graphic histogram possible option. Note breaking change. past code continue work now always produce histogram instead marginal graphic might chosen. Minimum needed R version now 4.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.9.0","text":"Online vignette combine_plots removed. case want create grid plots, highly recommended use patchwork package directly wrapper around mostly useful ggstatsplot plots. ggscatterstats labeling arguments accept unquoted inputs now, quoted string inputs. Allowing bad design choice past since functions ggstatsplot, inspired tidyverse, expect unquoted (x) - quoted (\"x\") - arguments. function odd one . Gets rid ipmisc dependency. Removes movies_wide dataset, virtually identical movies_long dataset used anywhere package. Also removes unused VR_dilemma dataset.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-080","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.8.0","title":"ggstatsplot 0.8.0","text":"CRAN release: 2021-06-09","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-8-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.8.0","text":"Adds extract_stats function extract dataframes containing statistical details.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-8-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.8.0","text":"finally publication ggstatsplot package! https://joss.theoj.org/papers/10.21105/joss.03167 ggcoefstats function defaults NULL xlab ylab arguments, lets users change labels wish . Additionally, x-axis label, specified, now defaults \"estimate\". Whether estimate corresponds regression coefficient effect size like partial eta-squared clear label . reduce dependency load, ggcorrplot moves Imports Suggests. bar.fill argument gghistostats retired favor new bin.args argument can used pass aesthetic arguments ggplot2::stat_bin. ggstatsplot.layer argument retired. user chooses certain ggplot2 theme, means want theme, ggstatsplot’s varnish . previous behavior undesirable. backward compatible change, plots look different.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-8-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.8.0","text":"pch size ggcorrmat increased 14 (#579) increase visibility compared correlation value text. ggwithinstats gains point.args change geom_point. Minor change ggcorrmat legend title - content parentheses now shown outside .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-8-0","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.8.0","text":"ggcoefstats didn’t work statistic given model chi-squared. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-072","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.2","title":"ggstatsplot 0.7.2","text":"CRAN release: 2021-04-12","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.2","text":"reduce dependency load, ggExtra moves Imports Suggests. functions robust sense statistical analysis fails, return plots subtitles/captions. helps avoid difficult--diagnose edge case failures primary functions used grouped_ functions (e.g., #559). ggpiestats ggbarstats functions always behaved way, rest functions now also mimic behavior.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-7-2","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.7.2","text":"ggcoefstats labels contain degrees freedom available instead displaying Inf.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-071","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.1","title":"ggstatsplot 0.7.1","text":"CRAN release: 2021-03-11","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.1","text":"Based feedback users, argument title.prefix now removed. led redundant title prefixes across different facets plot. Given grouped_ functions require users set grouping.var, fair assume variable levels title correspond .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-7-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.7.1","text":"Adapts changes made statsExpressions 1.0.0. sample.size.label argument retired ggbetweenstats, ggwithinstats, ggbarstats. think ever good idea . users wish display sample sizes, can easily using scale_* functions ggplot2. ggpiestats ggbarstats, parametric proportion tests now turned type = \"bayes\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-070","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.7.0","title":"ggstatsplot 0.7.0","text":"CRAN release: 2021-02-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-7-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.7.0","text":"combine_plots completely revised rely patchwork, patchwork, combine list ggplot together. done leaner syntax. revision, vestigial twin combine_plots longer needed removed. break existing instances grouped_ functions, although lead changed graphical layouts. instance change lead breakage specified labels argument. , used plotgrid.args = list(labels = \"auto\"), now replace plotgrid.args = list(tag_level = \"keep\"). can also use annotation.args (e.g., annotation.args = list(tag_levels = \"\") customize labels (create labels pattern , b, c, etc.). Another instance breakage used combine_plots function provided individual plots ... instead list. avoid confusion among users, default trimming level functions now changed tr = 0.1 tr = 0.2 (WRS2 defaults ).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-7-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.7.0","text":"robust tests package based trimmed means, except correlation test. changed: robust correlation measure now Winsorized correlation, based trimming. Therefore, beta argument replaced tr argument. result minor changes correlation coefficient estimates. Using annotate instead geom_label significantly slowed gghistostats ggdotplotstats functions. fixed. Removes vestigial notch notchwidth arguments ggbetweenstats ggwithinstats. Bayesian expression templates now explicit type estimate displayed. gghistostats ggdotplotstats, centrality measure labels used attached vertical line, occluded underlying data. Now label instead shown top x-axis. Note means make changes resulting plot using ggplot2::scale_x_continuous function, label likely disappear. centrality.k argument retired favor k.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-7-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.7.0","text":"models supported ggcoefstats: crr, eglm, elm, varest. ggbetweenstats, ggwithinstats, gghistostats, ggdotplotstats gain argument centrality.type can used specify centrality parameter displayed. one can type = \"robust\" still show median centrality parameter choosing centrality.type = \"nonparametric\".","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-068","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.8","title":"ggstatsplot 0.6.8","text":"CRAN release: 2021-01-19","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-8","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.8","text":"gghistostats removes bar.measure argument. function now defaults showing count information x-axis proportion information duplicated x-axis. ggscatterstats removes method method.args arguments. longer possible use function visualize data model linear. also retires margins argument. ggbetweenstats ggwithinstats functions, arguments type mean.* replaced centrality.*. now functions decide central tendency measure show depending type argument (mean parametric, median non-parametric, trimmed mean robust, MAP estimator Bayes). Similarly, gghistostats ggdotplotstats functions also decide central tendency measure show depending type argument (mean parametric, median non-parametric, trimmed mean robust, MAP estimator Bayes). Therefore, centrality.parameter argument removed. want turn displaying centrality measure, set centrality.plotting = FALSE. gghistostats ggdotplotstats functions remove functionality display vertical line corresponding test.value. feature turned default prior releases. Accordingly, related arguments two functions removed. ggscatterstats defaults densigram marginal distribution visualization. ggbetweenstats ggwithinstats now display centrality tendency measure way label doesn’t occlude raw data points (#429). mean.ci argument retired ggbetweenstats ggwithinstats. Future ggstatsplot releases providing different centrality measures depending type argument guaranteed CIs available. , sake consistency, argument just going retired.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-8","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.8","text":"ggcorrmat uses pretty formatting display sample size information. ggcoefstats now also displays degrees freedom chi-squared tests. Expects minor changes effect sizes confidence intervals due changes statsExpressions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-8","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.8","text":"models supported ggcoefstats: fixest, ivFixed, ivprobit, riskRegression. ggcorrmat supports partial correlations.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-066","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.6","title":"ggstatsplot 0.6.6","text":"CRAN release: 2020-12-03","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-6","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.6","text":"ggcoefstats longer supports exponentiate argument. specified, user adjust scales appropriately. ggcorrmat defaults changed significantly: matter good practice, p-values adjusted default multiple comparisons. default matrix upper type, full matrix, features many redundant comparisons self-correlations diagonally. Default text size legend increased 15 background grid removed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-6-6","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.6.6","text":"prior release, GitHub version BayesFactor wasn’t present, ggwithinstats just outright failed run ANOVA designs. fixed. Setting mean.path = FALSE ggwithinstats produced incorrect colors points (#470). bug introduced 0.6.5 now fixed. user set options(scipen = 999) session, p-value formatting ggpiestats ggcoefstats looked super-ugly (#478). fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-6","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.6","text":"Drops broomExtra dependencies. regression modeling-related analysis now relies easystats ecosystem. ggpiestats ggbarstats don’t support returning dataframes. See FAQ vignette get dataframes: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/faq.html#faq-1 ggpiestats ggbarstats supposed support returning Bayes Factor paired contingency table analysis, supported BayesFactor . ggcoefstats defaults displaying intercept term. Also, degrees freedom available t-statistic, displayed Inf, keeping easystats conventions. Instead showing significance p-values APA’s asterisks conventions, ggbarstats now instead shows actual p-values one-sample proportion tests.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-6","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.6","text":"models supported ggcoefstats: Glm.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-065","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.5","title":"ggstatsplot 0.6.5","text":"CRAN release: 2020-10-31","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-5","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.5","text":"ggpiestats ggbarstats longer vestigial arguments main condition, superseded x y, respectively.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.5","text":"consistency reduce confusion, Bayes Factor (irrespective whether subtitle caption) always favor null alternative (BF01). Retires centrality parameter tagging functionality ggscatterstats. Although default, turned , definitely created cluttered plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-061","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.1","title":"ggstatsplot 0.6.1","text":"CRAN release: 2020-10-06","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.1","text":"ggbetweenstats ggwithinstats functions now default pairwise.comparisons = TRUE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.1","text":"Plot borders now removed default theme. Small p-values (< 0.001) now displayed scientific notation.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-6-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.6.1","text":"pairwiseComparisons re-exports deprecated.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-060","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.6.0","title":"ggstatsplot 0.6.0","text":"CRAN release: 2020-09-13","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-6-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.6.0","text":"models supported ggcoefstats: BFBayesFactor, betamfx, crq, coxph.penal, geeglm, glht, glmm, lm_robust, lqm, lqmm, manova, maov, margins, negbinmfx, logitmfx, logitsf, margins, poissonmfx, betaor, negbinirr, logitor, metafor, metaplus, orm, poissonirr, semLm, semLme, vgam. ggpiestats gains label.repel argument cover contexts labels might overlap. Setting TRUE minimize overlap. ggbetweenstats ggwithinstats gain ggsignif.args argument make easy change aesthetics pairwise comparison geom. subtitle caption Bayes Factor tests now also provide information posterior estimates, relevant.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-6-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.6.0","text":"Removed unused intent_morality dataset. ggcoefstats retires caption.summary argument. , default, caption going contain much information can users can choose modify default caption using ggplot2 functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-6-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.6.0","text":"argument method ggcorrmat renamed matrix.method, since confusing whether method referred correlation method. ggpiestats ggbarstats, count labels longer include n = confusing since labels n = explanation n differed n proportion test. longer relies groupedstats package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-050","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.5.0","title":"ggstatsplot 0.5.0","text":"CRAN release: 2020-05-30","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-5-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.5.0","text":"pairwise.annotation argument ggbetweenstats ggwithinstats deprecated. done - Different fields different schema significance levels asterisks represent. p-value labels also contain information whether adjusted multiple comparisons. normality_message bartlett_message helper functions removed. model assumption checks don’t really fall purview package. excellent visualization tools model assumption checks (ggResidpanel, performance, DHARMa, olsrr, etc.), preferred unhelpful messages p-values functions printing. ’s worth, functions messages displayed (ggbetweenstats ggwithinstats) feature visualizations rich enough defaults sensible enough time one can either assess assumptions plots need worry .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-5-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.5.0","text":"ggcoefstats refactored reflect broomExtra::tidy_parameters now defaults parameters package instead broom. also loses following vestigial arguments: p.adjust.method coefficient.type. Reverts aligning title subtitle plot axes, since looked pretty ugly (esp., ggcoefstats) causing problems labels. factor.levels (ggpiestats) labels.legend (ggbarstats) deprecated. users like changes names factor levels, done outside ggstatsplot. non-parametric post hoc test -subjects design changed Dwass-Steel-Crichtlow-Fligner test Dunn test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-5-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.5.0","text":"models supported ggcoefstats: bayesGARCH, clm2, clmm2, mcmc.list, robmixglm.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-040","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.4.0","title":"ggstatsplot 0.4.0","text":"CRAN release: 2020-04-15","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.4.0","text":"ggcorrmat longer returns matrices correlation coefficients details. now returns either plot data frame can data frame can used create matrices. ggbarstats loses x.axis.orientation argument. argument supposed help avoid overlapping x-axis label, now ggplot2 3.3.0 better way handle : https://www.tidyverse.org/blog/2020/03/ggplot2-3-3-0/#rewrite--axis-code","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-4-0","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.4.0","text":"models supported ggcoefstats: bayesx, BBmm, brmultinom, lmerModLmerTest, lrm. Specifying output = \"proptest\" ggpiestats ggbarstats functions now return data frame containing results proportion test. ggbetweenstats ggwithinstats display pairwise comparisons even results.subtitle set FALSE. ggcorrmat supports computing Bayes Factors Pearson’s r correlation. ggbetweenstats ggwithinstats now support pairwise comparisons Bayes Factor test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.4.0","text":"changes related subtitle details, see changes made new version statsExpressions 4.0.0: https://CRAN.R-project.org/package=statsExpressions/news/news.html ggbetweenstats ggwithinstats longer print dataframes containing results pairwise comparisons tests cluttering user’s console. users now instead advised either extract data frame using ggplot2::ggplot_build() function use pairwiseComparisons::pairwise_comparisons() function used background ggstatsplot carry analysis. Due changes one downstream dependencies, ggstatsplot now expects minimum R version 3.6.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.4.0","text":"ggcorrmat now internally relies correlation correlation analyses. ggbarstats longer displays \"percent\" Y-axis label redundant information. Continuing argument cleanup began 0.3.0, ggcoefstats gains point.args argument instead individuals point.* arguments. subtitles explicit details test. reason stat.title argument relevant functions retired since argument supposed entering additional details test. Additionally, plot titles subtitles plots aligned plot. ggcorrmat legend, case missing values, shows mode - instead median - distribution sample pairs. following vestigial arguments retired: caption.default ggcorrmat k.caption.summary ggcoefstats","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-031","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.3.1","title":"ggstatsplot 0.3.1","text":"CRAN release: 2020-03-06 hotfix release correct failing tests minor breakages resulting new release ggplot2 3.3.0.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-3-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.3.1","text":"ggpiestats loses sample.size.label argument since information included goodness fit test results . setting proportion.test FALSE suppress information.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-030","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.3.0","title":"ggstatsplot 0.3.0","text":"CRAN release: 2020-03-01","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.3.0","text":"give users flexibility terms modifying aesthetic defaults geoms included ggstatsplot plots (plot typically multiple geoms), package now uses new form syntax. Previously, geom separate argument specify aesthetic (e.g., geom_point get arguments like point.size, point.color, etc.), resulted functions massive number arguments unsustainable long run. Instead, ggstatsplot functions now expect list arguments respective geom (e.g., geom_point point.args argument list arguments list(size = 5, color = \"darkgreen\", alpha = 0.8) can supplied). grouped_ functions refactored reduce number arguments. functions now internally use new combine_plots instead combine_plots. additional arguments primary functions can provided .... changes necessarily break existing code lead minor graphical changes (e.g., providing labels argument explicitly, ignored). functions lose return argument, supposed alternative enter output. just leading confusion user’s part. biggest user-visible impact going ggcorrmat longer backward-compatible. older scripts still work return argument anything except \"plot\", just ignored. ggcorrmat longer corr.method argument. consistent rest functions package, type statistics specified using type argument. Additional, gains new argument ggcorrplot.args, can used pass additional arguments underlying plotting function (ggcorrplot::ggcorrplot). gghistostats ggdotplotstats now use following arguments modify geoms corresponding lines labels: test.value.line.args, test.value.label.args, centrality.line.args, centrality.label.args. helps avoid specifying millions arguments. Removes vestigial ggplot_converter function. ggpiestats ggbarstats remove following vestigial arguments: facet.wrap.name, bias.correct, bar.outline.color. bar.proptest facet.proptest arguments difficult remember confusing replaced common proportion.test argument. Additionally, following arguments removed replaced label argument: slice.label, bar.label, data.label. plethora options headache remember. gghistostats loses following arguments: fill.gradient, low.color, high.color. made sense add color gradient plot Y-axis already displayed information bar represented. ggscatterstats loses following arguments: palette package. Since function requires two colors, didn’t make much sense use color palettes specify . can instead specified using xfill yfill. can always use paletteer::paletteer_d get vector color values provide values choosing xfill yfill. Removes sorting options ggbetweenstats ggwithinstats functions. something users can easily entering data functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.3.0","text":"ggcorrmat never supposed work Kendall’s correlation coefficient accidentally . longer case. ggstatsplot now logo, thanks Sarah! :) default theme_ggstatsplot changes slightly. biggest change title subtitle plots now aligned left plot. change also forced legend ggpiestats displayed right side plot rather bottom.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.3.0","text":"models supported ggcoefstats: BBreg, bcplm, bife, cglm, crch, DirichReg, LORgee, zcpglm, zeroinfl. Following functions now re-exported ipmisc: bartlett_message, normality_message. internal data wrangling functions now reside ipmisc.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-020","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.2.0","title":"ggstatsplot 0.2.0","text":"CRAN release: 2020-02-03","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.2.0","text":"manageable length function arguments, additional aesthetic specifications given geom can provided via dedicated *.args argument. example, aesthetic arguments geom_vline can provided via vline.args, geom_errorbarh via errorbar.args, etc. ggstatsplot continues conscious uncoupling started 0.1.0 release: following functions now moved statsExpressions package: subtitle_meta_parametric bf_meta_message follow logical nomenclature. reason, lm_effsize_ci function also longer exported lives groupedstats package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.2.0","text":"summary caption longer displays log-likelihood value tends available number regression model objects caption unnecessarily skipped. Supports robust Bayes Factors random-effects meta-analysis.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.2.0","text":"New dataset included: bugs_wide models supported ggcoefstats: cgam, cgamm, coxme, cpglm, cpglmm, complmrob, feis, flexsurvreg, glmx, hurdle, iv_robust, mixor, rqss, truncreg, vgam. Removed vestigial arguments ggcorrmat (e.g., exact, continuity, etc.) ggpiestats (bf.prior, simulate.p.value, B, etc.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-014","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.4","title":"ggstatsplot 0.1.4","text":"CRAN release: 2019-12-18","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-1-4","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.1.4","text":"ggbetweenstats ggwithinstats longer produce error variables pattern mean (#336).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.4","text":"pairwise_p reintroduced number users found useful call function ggstatsplot rather using pairwiseComparisons package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-1-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.1.4","text":"ggbetweenstats ggwithinstats use [ instead ( display confidence intervals. Additionally, μ\\mu denoted sample mean, confused population mean users. functions instead display μ̂\\hat{\\mu}. models supported ggcoefstats: bmlm, coeftest Adapts new syntax provided paletteer package.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-013","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.3","title":"ggstatsplot 0.1.3","text":"CRAN release: 2019-11-21","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.3","text":"avoid excessive arguments function, arguments relevant ggrepel ggcoefstats function removed. users can instead provide arguments list stats.labels.args argument.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-1-3","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.1.3","text":"ggbetweenstats ggwithinstats longer produce incorrect label data frame already contains variable named n (#317) variables pattern mean (#322). ggbetweenstats ggwithinstats mean labels respect k argument (#331). MINOR ggcoefstats now uses parameters::p_value instead sjstats::p_value, requested maintainer package. might lead differences p-values lmer models. models supported ggcoefstats: blavaan, bracl, brglm2, glmc, lavaan, nlreg, slm, wbgee. ggcoefstats gains .significant argument display display stats labels significant effects. can helpful large number regression coefficients displayed single plot.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-012","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.2","title":"ggstatsplot 0.1.2","text":"CRAN release: 2019-09-17 MINOR Minor code refactoring gets rid following dependencies: magrittr, ellipsis, purrrlyr. MAJOR p-value label now specifies whether p-value displayed ggbetweenstats ggwithinstats pairwise comparisons adjusted multiple comparisons.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-011","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.1.1","title":"ggstatsplot 0.1.1","text":"CRAN release: 2019-08-30 ANNOUNCEMENTS ggstatsplot undergoing conscious uncoupling whereby statistical processing functions make stats subtitles moved new package called statsExpressions. new package act backend handles things statistical processing. affect end users ggstatsplot unless using helper functions. Additionally, multiple pairwise comparison tests moved independent package called pairwiseComparisons. uncoupling designed achieve two things: Make code base manageable size ggstatsplot, make package development bit easier. Make workflow customizable since now can prepare plots use statsExpressions display results plot rather relying ggstatsplot default plots heavily opinionated appealing everyone.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.1.1","text":"helper functions subtitle_* bf_* moved new statsExpressions package. consistent subtitle_ bf_ functions, subtitle_contingency_tab bf_contingency_tab now use arguments x y instead main condition.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.1.1","text":"Major refactoring reduce codesize rely fully rlang. confusion red point ggbetweenstats ggbetweenstats plots represents. Now label also contains μ\\mu highlight displayed mean value. consistent rest functions, ggpiestats ggbarstats now uses following aliases arguments: x main y condition. change backward-compatible pose problems scripts used main condition arguments functions. subtitle expressions now report details design. case -subjects design, n_obsn\\_{obs}, case repeated measures design, n_pairsn\\_{pairs}. pairwise.annotation now defaults \"p.value\" rather \"asterisk\" ggbetweenstats ggwithinstats (grouped_ variants) functions. done asterisk conventions consistent across various scientific disciplines.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-1-1","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.1.1","text":"New dataset included: bugs_long, repeated measures designs NAs present data. ggstatsplot now uses rcompanion compute Spearman’s rho Kendall’s W. Therefore, DescTools removed dependencies. ggcoefstats supports following objects: bglmerMod, blmerMod, lme, mclogit, mmclogit, tobit, wblm. ggcoefstats now respects conf.int. internally always defaulted conf.int = TRUE broom::tidy irrespective specified user. painfully confusing lot users exactly asterisks facet ggpiestats signified. instead now ggpiestats displays detailed results goodness fit (gof) test. change made ggbarstats space include details bar. Removed conf.method conf.type arguments ggcoefstats. Also, p.kr argument removed ggcoefstats begin rely parameters instead sjstats package compute p-values regression models.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0012","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.12","title":"ggstatsplot 0.0.12","text":"CRAN release: 2019-07-12","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-12","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.12","text":"Bayes Factor ggwithinstats caption, displayed default, incorrect. fixed. stemmed line code paired = TRUE, instead paired = FALSE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.12","text":"effect size measure Kruskal-Wallis test changed obscure H-based eta-squared statistic common interpretable epsilon-squared.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.12","text":"ggcoefstats defaults bf.message = TRUE consistent rest functions package. ggcoefstats supports following class objects: epi.2by2, negbin, emmGrid, lmrob, glmrob, glmmPQL, data.table. bf_ttest introduced general function. previously exported bf_one_sample_ttest bf_two_sample_ttest become aliases. bf_meta_message syntax changes adapt updates made metaBMA package (thanks #259).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-12","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.12","text":"vestigial arguments axis.text.x.margin.t, axis.text.x.margin.r, axis.text.x.margin.b, axis.text.x.margin.l ggcorrmat removed. margins can adjusted using ggplot2::margin(). gghistostats longer allows data argument NULL. make function’s syntax consistent rest functions package (none allow data NULL). also removes confusion arose users data couldn’t NULL grouped_ cousin (grouped_gghistostats). outlier_df function longer exported since always meant internal function accidently exported initial release retained backward compatibility.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0011","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.11","title":"ggstatsplot 0.0.11","text":"CRAN release: 2019-06-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.11","text":"Instead two separate functions dealt repeated measures (subtitle_friedman_nonparametric) -subjects (subtitle_kw_nonparametric), single function subtitle_anova_nonparametric handles designs paired argument determining test run. functions supported Bayes Factor analysis (type = \"bf\") return BF value scale used. Previously, mix parametric statistics BF, confusing often times misleading since two types analyses relied different tests. default bf.message changed FALSE TRUE. make Bayes Factor analysis visible user.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.11","text":"ggscatterstats returns plot (without statistical details) specified model linear (.e., either method argument \"lm\" formula y ~ x).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-11","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.11","text":"New functions ggwithinstats (grouped_ variant) introduced counterpart ggbetweenstats handle repeated measures designs. repeated measures ANOVA, subtitle_anova_nonparametric now returns confidence intervals Kendall’s W. functions get return argument can used return either \"plot\", \"subtitle\", \"caption\". makes unnecessary remember subtitle function used . result, next release, subtitle making functions exported encouraged used either developers users. subtitle_anova_robust subtitle_anova_parametric gain new argument paired support repeated measures designs. ggcoefstats can support following new model objects: drc, mlm. ggcoefstats gains bf.message argument display caption containing results Bayesian random-effects meta-analysis. therefore gains new dependency: metaBMA. ggpiestats ggcatstats now display Cramer’s V effect size one-sample proportion tests. functions gain stat.title argument (NULL default) can used prefix subtitle string interest. possibly useful specifying details statistical test.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-11","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.11","text":"pairwise_p() function longer outputs conf.low conf.high columns parametric post hoc tests run. values accurate p-value adjustment carried . Instead using internal function cor_test_ci, ggscatterstats instead used SpearmanRho function DescTools package. done reduce number custom internal functions used compute CIs various effect sizes. ggstatsplot therefore gains DescTools dependency. sampling.plan argument default ggbarstats function changed \"indepMulti\" \"jointMulti\" consistent sister function ggpiestats.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-0010","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.10","title":"ggstatsplot 0.0.10","text":"CRAN release: 2019-03-17","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-10","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.10","text":"ggcoefstats can support following new model objects: rjags. New VR_dilemma dataset toying around within-subjects design. subtitle_t_onesample supports Cohen’s d Hedge’s g effect sizes also produces confidence intervals. Additionally, non-central variants effect sizes also supported. Thus, gghistostats grouped_ variant gets two new arguments: effsize.type, effsize.noncentral. ggpiestats used display odds ratio effect size paired designs (McNemar test). working analysis 2 x 2 contingency table. now instead displays Cohen’s G effect size, generalizes kind design.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-10","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.10","text":"internal function outlier_df add column specifying outlier status given data point now exported. ggstatsplot previously relied internal function chisq_v_ci compute confidence intervals Cramer’s V using bootstrapping pretty slow. now instead relies rcompanion package compute confidence intervals V. ggstatsplot, therefore, gains new dependency. subtitle_mann_nonparametric subtitle_t_onesample now computes effect size r confidence intervals Z/NZ/\\sqrt{N} (help rcompanion package), instead using Spearman correlation.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-009","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.9","title":"ggstatsplot 0.0.9","text":"CRAN release: 2019-02-18","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.9","text":"subtitle_t_onesample longer data optional argument. done consistent subtitle helper functions.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-9","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.9","text":"New function ggbarstats (grouped_ variant) introduced making bar charts (thanks #78). ggcoefstats also displays caption model summary meta-analysis required. gghistostats grouped_ variant new argument normal.curve superpose normal distribution curve top histogram (#138). ggcoefstats can support following new regression model objects: brmsfit, gam, Gam, gamlss, mcmc, mjoint, stanreg. New function convert plots gg/ggplot class ggplot class objects. Instead using effsize compute Cohen’s d Hedge’s g, ggstatsplot now relies new (#159) internal function effect_t_parametric compute . removes effsize dependencies. consistent functions package, ggbarstats ggpiestats gain results.subtitle can set FALSE statistical analysis required, case subtitle argument can used provide alternative subtitle.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.9","text":"ggbetweenstats now defaults using noncentral-t distribution computing Cohen’s d Hedge’s g. get variants central-t distribution, use effsize.noncentral = FALSE.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-9","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.9","text":"grouped_ functions argument title.prefix defaulted \"Group\". now instead defaults NULL, case prefix variable name grouping.var argument. accommodate non-parametric tests, subtitle_template function can now work parameter = NULL. ggbetweenstats, details contained subtitle non-parametric test modified. now uses Spearman’s rho-based effect size estimates. removes coin dependencies. ggbetweenstats grouped_ variant gain new argument axes.range.restrict (defaults FALSE). restricts y-axes limits minimum maximum y variable. functions default past versions, created issues additional ggplot components using ggplot.component argument. bayes factor related subtitle captions replace prior.width r_{Cauchy}. ggcoefstats passes dots (...) augment method broom.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-9","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.9","text":"helper function bf_extractor longer provides option extract information posterior distribution details incorrect. posterior = TRUE details used anywhere package nothing results changes. ggcorrmat didn’t output pair names output == \"ci\" used. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-008","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.8","title":"ggstatsplot 0.0.8","text":"CRAN release: 2019-01-07","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-8","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.8","text":"ggcoefstats gains meta.analytic.effect can used carry meta-analysis regression estimates. especially useful data frame regression estimates standard error available prior analyses. subtitle prepared new function subtitle_meta_ggcoefstats also exported. ggbetweenstats, ggscatterstats, gghistostats, ggdotplotstats (grouped_ variants) gain new ggplot.component argument. argument primarily helpful change individual plots grouped_ plot. ggcoefstats can support following new regression model objects: polr, survreg, cch, Arima, biglm, glmmTMB, coxph, ridgelm, aareg, plm, nlrq, ivreg, ergm, btergm, garch, gmm, lmodel2, svyolr, confusionMatrix, multinom, nlmerMod, svyglm, MCMCglmm, lm.beta, speedlm, fitdistr, mle2, orcutt, glmmadmb.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-8","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.8","text":"ggcoefstats didn’t work statistic argument set NULL. expected behavior. fixed. Now, statistic specified, dot--whiskers shown without labels. subtitle_t_parametric producing incorrect sample size information paired = TRUE data contained NAs. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-8","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.8","text":"ggscatterstats grouped_ variant accept character bare exressions input arguments label.var labe.expression (#110). consistent rest functions package, Pearson’s r, Spearman’s rho, robust percentage bend correlations also display information statistic associated tests. ggscatterstats, default, showed jittered data points (relied position_jitter defaults). visually inaccurate , therefore, ggscatterstats now displays points without jitter. user can introduce jitter wish using point.width.jitter point.height.jitter arguments. similar reasons, ggbetweenstats grouped_ variant, point.jitter.height default changed 0.1 0 (vertical jitter, .e.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-8","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.8","text":"Confidence interval Kendall’s W now computed using stats::kruskal.test. result, PMCMRplus removed dependencies. ggcoefstats gains caption argument. caption.summary set TRUE, specified caption added top caption.summary.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-007","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.7","title":"ggstatsplot 0.0.7","text":"CRAN release: 2018-12-08","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-7","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.7","text":"ggcoefstats showing wrong confidence intervals merMod class objects due bug broom.mixed package (https://github.com/bbolker/broom.mixed/issues/30#issuecomment-428385005). fixed broom.mixed ggcoefstats longer issues. specify_decimal_p modified produced incorrect results k < 3 p.value = TRUE (e.g., 0.002 printed < 0.001). ggpiestats produced incorrect results levels factor filtered prior using function. now drops unused levels produces correct results. gghistostats wasn’t filtering NAs properly. fixed.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-7","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.7","text":"New function ggdotplotstats creating dot plot/chart labelled numeric data. primary functions gain conf.level argument control confidence level effect size measures. per APA guidelines, results show results two decimal places. , default value k argument functions changed 3 2. helper functions ggbetweenstats subtitles renamed remove _ggbetween_ names becoming confusing user. functions work - within-subjects designs, _ggbetween_ names made users suspect use functions within-subjects designs. ggstatsplot now depends R 3.5.0. dependencies require 3.5.0 work (e.g., broom.mixed). theme_ functions now exported (theme_pie(), theme_corrmat()). ggbetweenstats now supports multiple pairwise comparison tests (parametric, nonparametric, robust variants). gains new dependency ggsignif. ggbetweenstats now supports eta-squared omega-squared effect sizes anova models. function gains new argument partial. Following functions now reexported groupedstats package avoid repeating code two packages: specify_decimal_p, signif_column, lm_effsize_ci, set_cwd. Therefore, groupedstats now added dependency. gghistostats can now show counts proportions information plot bar.measure argument set \"mix\". ggcoefstats works tidy dataframes. helper function untable deprecated light tidyr::uncount, exactly untable . author wasn’t aware function untable written. vignettes removed CRAN reduce size package. now available package website: https://indrajeetpatil.github.io/ggstatsplot/articles/. subtitle_t_robust function can now handle dependent samples gains paired argument. number tidyverse operators now reexported ggstatsplot: %>%, %<>%, %$%.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-7","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.7","text":"ggscatterstats, ggpiestats, grouped_ variant support bayes factor tests gain new arguments relevant test. Effect size confidence intervals now available Kruskal-Wallis test. Minor stylistic changes symbols partial-eta-/omega-squared displayed subtitles. ggbetweenstats supports bayes factor tests anova designs. ggpiestats (grouped_ version) gain slice.label argument decides information needs displayed label slices pie chart: \"percentage\" (default thus far), \"counts\", \"\". ggcorrmat can work cor.vars = NULL. case, numeric variables provided data frame used computing correlation matrix. Given constant changes default behavior functions, lifecycle badge changed stable maturing. number colors needed function exceeds number colors contained given palette, informative message displayed user (new internal function palette_message()). Several users requested easier way turn subtitles results tests (already implemented ggscatterstats gghistostats argument results.subtitle), ggbetweenstats also gains two new arguments : results.subtitle subtitle. New dataset added: iris_long. tests added code coverage now jumped 75%. avoid code repetition, now function produces generic message time confidence intervals effect size estimate computed using bootstrapping.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-006","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.6","title":"ggstatsplot 0.0.6","text":"CRAN release: 2018-09-30","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.6","text":"package now exports functions used create text expressions results. makes easy people use results plots location want (just subtitle, current default ggstatsplot). ggcorrmat gains p.adjust.method argument allows p-values correlations corrected multiple comparisons. ggscatterstats gains label.var label.expression arguments attach labels points. gghistostats now defaults showing (redundant) color gradient (fill.gradient = FALSE) shows \"count\" \"proportion\" data. also gains new argument bar.fill can used fill bars uniform color. ggbetweenstats, ggcoefstats, ggcorrmat, ggscatterstats, ggpiestats now support palettes contained paletteer package. helps avoid situations people large number groups (> 12) enough colors RColorBrewer palettes. ggbetweenstats gains bf.message argument display bayes factors favor null (currently works parametric t-test). gghistostats function longer line.labeller.y argument; position automatically determined now.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"breaking-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"BREAKING CHANGES","title":"ggstatsplot 0.0.6","text":"legend.title.margin function deprecated since ggplot2 3.0.0 improved margin issues previous versions. functions wrapped around function now lose relevant arguments (legend.title.margin, t.margin, b.margin). argument ggstatsplot.theme changed ggstatsplot.layer ggcorrmat function consistent across functions. consistency, conf.level conf.type arguments ggbetweenstats deprecated. function package allowed changing confidence interval type effect size estimation. arguments relevant robust tests anyway. ggocorrmat argument type changed matrix.type functions type argument specifies type test, function specified display visualization matrix. make syntax consistent across functions. ggscatterstats gains new arguments specify aesthetics geom point (point.color, point.size, point.alpha). consistent naming schema, width.jitter height.jitter arguments renamed point.width.jitter point.height.jitter, resp.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-6","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.6","text":"gghistostats: compatible JASP, natural logarithm Bayes Factors displayed, base 10 logarithm. ggscatterstats gains method formula arguments modify smoothing functions. ggcorrmat can now show robust correlation coefficients matrix plot. gghistostats, binwidth value, specified, computed (max-min)/sqrt(n). basically get rid warnings ggplot2 produces. Thanks Chuck Powell’s PR (#43). ggcoefstats gains new argument partial can display eta-squared omega-squared effect sizes anovas, addition prior partial variants effect sizes. ggpiestats gains digits.perc argument show desired number decimal places percentage labels.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-6","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.6","text":"grouped_ggpiestats wasn’t working main variable provided counts data. Fixed .","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-005","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.5","title":"ggstatsplot 0.0.5","text":"CRAN release: 2018-08-14","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-5","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.5","text":"sake consistency, theme_mprl now called theme_ggstatsplot. theme_mprl function still around deprecated, feel free use either since identical. ggcoefstats longer arguments effects ran_params fixed effects shown mixed-effects models. ggpiestats can now handle within-subjects designs (McNemar test results displayed).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-5","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.5","text":"ggbetweenstats producing wrong axes labels sample.size.label set TRUE user reordered factor levels using function. new version fixes . ggcoefstats wasn’t producing partial omega-squared aovlist objects. Fixed new version sjstats.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-5","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.5","text":"Removed trailing comma robust correlation analyses. gghistostats new argument remove color fill gradient. ggbetweenstats takes new argument mean.ci show confidence intervals mean values. lmer models, p-values now computed using sjstats::p_value. removes lmerTest package dependencies. sjstats longer suggests apaTables package compute confidence intervals partial eta- omega-squared. Therefore, apaTables MBESS removed dependencies. ggscatterstats supports densigram development version ggExtra. additionally gains extra arguments change aesthetics marginals (alpha, size, etc.).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-004","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.4","title":"ggstatsplot 0.0.4","text":"CRAN release: 2018-07-05","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-4","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.4","text":"New function: ggcoefstats displaying model coefficients. functions now ggtheme argument can used change default theme, now changed theme_grey() theme_bw(). robust correlation longer MASS::rlm, percentage bend correlation, implemented WRS2::pbcor. done consistent across different functions. ggcorrmat also uses percentage bend correlation robust correlation measure. also means ggstatsplot longer imports MASS sfsmisc. data argument longer NULL functions, except gghistostats. words, user must provide data frame variables formulas selected. subtitles containing results now also show sample size information (n). adjust inflated length subtitle, default subtitle text size changed 12 11.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-4","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.4","text":"Switched back Shapiro-Wilk test normality remove nortest imports. ggbetweenstats ggpiestats now display sample sizes level groping factor default. behavior can turned setting sample.size.label FALSE. Three new datasets added: Titanic_full, movies_wide, movies_long. Added confidence interval effect size robust ANOVA. 95% CI Cramer’V computed using boot::boot. Therefore, package longer imports DescTools. consistent across correlations covered, correlations now show estimates correlation coefficients, confidence intervals estimate, p-values. Therefore, t-values regression coefficients longer displayed Pearson’s r. legend.title.margin arguments gghistostats ggcorrmat now default FALSE, since ggplot2 3.0.0 better legend title margins. ggpiestats now sorts summary dataframes percentages levels main variable. done legends across different levels grouping variable grouped_ggpiestats. remove cluttered display results subtitle, ggpiestats longer shows titles tests run (“Proportion test” “Chi-Square test”). pie charts, obvious user reader test run. gghistostats also allows running robust version one-sample test now (One-sample percentile bootstrap).","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-003","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.3","title":"ggstatsplot 0.0.3","text":"CRAN release: 2018-05-22","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-3","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.3","text":"ggbetweenstats function can now show notched box plots. Two new arguments notch notchwidth control behavior. defaults still standard box plots. Removed warnings appearing outlier.label argument character type. default color palette used plots colorblind friendly. gghistostats supports proportion density value measure bar heights show proportions density. New argument bar.measure controls behavior. grouped_ variants functions ggcorrmat, ggscatterstats, ggbetweenstats, ggpiestats introduced create multiple plots different levels grouping variable.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-3","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.3","text":"internally consistent, functions ggstatsplot use spelling color, rather colour functions, color others. Removed redundant argument binwidth.adjust gghistostats function. argument relevant first avatar function, longer playing role. internally consistent, argument lab_col lab_size ggcorrmat changed lab.col lab.size, respectively.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-3","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.3","text":"Added new argument ggstatsplot.theme function control ggstatsplot::theme_mprl overlaid top selected ggtheme (ggplot2 theme, .e.). Two new arguments added gghistostats allow user change colorbar gradient. Defaults colorblind friendly. gghistostats ggcorrmat new argument legend.title.margin control margin adjustment title colorbar. vertical lines denoting test values centrality parameters can tagged text labels new argument line.labeller gghistostats function.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"bug-fixes-0-0-3","dir":"Changelog","previous_headings":"","what":"BUG FIXES","title":"ggstatsplot 0.0.3","text":"centrality.para argument ggscatterstats working properly. Choosing \"median\" didn’t show median, mean. fixed now.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-002","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.2","title":"ggstatsplot 0.0.2","text":"CRAN release: 2018-04-28","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"new-features-0-0-2","dir":"Changelog","previous_headings":"","what":"NEW FEATURES","title":"ggstatsplot 0.0.2","text":"Bayesian test added gghistostats two new arguments also display vertical line test.value argument. Vignette added gghistostats. Added new function grouped_gghistostats facilitate applying gghistostats multiple levels grouping factor. ggbetweenstats new argument outlier.coef adjust threshold used detect outliers. Removed bug function outlier.label argument factor/character type.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"major-changes-0-0-2","dir":"Changelog","previous_headings":"","what":"MAJOR CHANGES","title":"ggstatsplot 0.0.2","text":"Functions signif_column grouped_proptest now deprecated. exported first release mistake. Function gghistostats longer displays density count since density information redundant. density.plot argument also deprecated. ggscatterstats argument intercept now changed centrality.para. due possible confusion interpretation lines; show central tendency measures intercept linear model. Thus change. default effsize.type = \"biased\" effect size ggbetweenstats case ANOVA partial omega-squared, omega-squared. Additionally, partial eta- omega-squared computed using bootstrapping (default) 100 bootstrap samples.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"minor-changes-0-0-2","dir":"Changelog","previous_headings":"","what":"MINOR CHANGES","title":"ggstatsplot 0.0.2","text":"examples added README document. 95% confidence intervals Spearman’s rho now computed using broom package. RVAideMemoire package thus removed dependencies. 95% confidence intervals partial eta- omega-squared ggbetweenstats function now computed using sjstats package, allows bootstrapping. apaTables userfriendlyscience packages thus removed dependencies.","code":""},{"path":"https://indrajeetpatil.github.io/ggstatsplot/news/index.html","id":"ggstatsplot-001","dir":"Changelog","previous_headings":"","what":"ggstatsplot 0.0.1","title":"ggstatsplot 0.0.1","text":"CRAN release: 2018-04-03 First release package.","code":""}]