-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimage_set.py
213 lines (168 loc) · 6.77 KB
/
image_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 25 12:31:47 2015
@author: tomish
"""
import os.path
import re
import glob
from PIL import Image
import cv2
import numpy as np
def convert_to_gs_enhance_blue(I):
# added small constant to avoid division by zero problems
I2 = 3 * np.square(I[:,:,0].astype('float')) / (np.sum(I.astype('float'), axis=2) + 0.0001)
if np.max(I2) > 255:
I2 = I2 / np.max(I2) * 255
return I2.astype('uint')
#return np.clip(3 * np.square(I[:,:,0].astype('float')) / (np.sum(I.astype('float'), axis=2)+ 0.0001), 0, 255).astype('uint')
class ImgSet(object):
"""Stores a collection of images.
Each image is stored as a column vector. Currently we only support monochromatic images.
Attributes:
data_folder (str):
name (str):
file_type (str):
files (list of str):
M (numpy array):
w (int): Width of each image
h (int): height of each image
"""
#data_folder = ''
#name = '' # Change this to batch_name to avoid confusion with setter()
#file_type = ''
#files = []
#M = None
#w = None
#h = None
def __init__(self, name, M=None, w=None, h=None, first=None, last=None, step=1, data_folder='data', file_type='png', force_cache=False, enhance_blue=False):
self.data_folder = data_folder
self.file_type = file_type
self.enhance_blue = enhance_blue
# If we passed the image matrix in just use that
if M is not None and w and h:
print "loading from matrix"
self.name = name
self.M = M
self.w = w
self.h = h
else: # Otherwise load from files or cache
if not first or not last:
self.name = name
else:
self.name = '%s_%s-%s' % (name, first, last)
# Try loading from cache
cache_file = self.get_cache_file()
if cache_file:
print "Loading cache file: %s" % cache_file
data = np.load(cache_file)
self.M = data['M']
self.w = data['w']
self.h = data['h']
# Load from files
else:
print "loading from image files in %s" % self.get_directory()
files = self.get_file_names()
if not first or not last:
first = 0
last = len(files)
# Todo: add Try statement and warning: make sure you have correct filetype bla
self.files = files[first:last:step]
img = Image.open(self.files[0]) # Lazy so won't load into memory
self.w, self.h = img.size
if force_cache:
M = np.empty([self.w * self.h, len(self)], dtype='uint8')
for i, img in enumerate(self):
M[:, i] = img.reshape(-1)
self.M = M
self.save()
@classmethod
def load_from_cache(cls, cache_file):
"""Factory to create an ImgSet from a cache file"""
if os.path.isfile(cache_file):
data = np.load(cache_file)
return cls(name=data['name'], M=data['M'], w=data['w'], h=data['h'])
else:
# Throw error here
return None
def get_cache_file_name(self):
"""Return the corresponding cache file name"""
return os.path.join(self.data_folder, self.name + '.npz')
def get_cache_file(self):
"""Returns corresponding cache file name if it exists in filesystem"""
cache_file = self.get_cache_file_name()
if os.path.isfile(cache_file):
return cache_file
else:
# Throw error here
return None
def get_directory(self):
"""Strips indices from name to give directory of files"""
directory_name = re.split('_[0-9]+\-[0-9]+', self.name)[0]
return os.path.join(self.data_folder, directory_name)
def get_file_names(self):
"""Returns sorted filenames in image set directory"""
directory = self.get_directory()
return sorted(glob.glob('%s/*.%s' % (directory, self.file_type)))
def save(self):
"""Save the image set to compressed Numpy format"""
cache_file = self.get_cache_file_name()
np.savez_compressed(cache_file, name=self.name, M=self.M, w=self.w, h=self.h)
def images_from_files(self):
"""Iterates through files to yield images"""
for file_name in self.files:
if self.enhance_blue:
I = cv2.imread(file_name, 1)
img = convert_to_gs_enhance_blue(I)
else:
img = cv2.imread(file_name, 0) # Grayscale
yield img
def images_from_matrix(self):
"""Iterates through matrix to yield images"""
# convert boolean to 8 bit
if self.M.dtype == np.dtype('bool'):
M_grayscale = self.M.T.astype('u1') * 255
# Convert positive and negative changes to 8 bit
elif np.min(self.M) == -1 and np.max(self.M) == 1:
M_grayscale = ((self.M.T + 1) * 255 / 2).astype('u1')
else:
M_grayscale = self.M.T
for row in M_grayscale:
yield row.reshape(self.h, self.w)
def __iter__(self):
"""Iterates through images"""
if hasattr(self, 'M') and self.M is not None:
return self.images_from_matrix()
else:
return self.images_from_files()
def __len__(self):
"""Number of images in the image set"""
if hasattr(self, 'M') and self.M is not None:
return self.M.shape[1]
else:
return len(self.files)
def __getitem__(self, key):
"""Load an image by index"""
if hasattr(self, 'M') and self.M is not None:
if self.M.dtype == np.dtype('bool'):
row = self.M[:,key].astype('u1') * 255
else:
row = self.M[:,key]
return row.reshape(self.h, self.w)
else:
print "loading %s" % self.files[key]
return cv2.imread(self.files[key], 0)
def view_as_movie(self):
"""View the image set as movie"""
# TODO: allow this to be done from a particular index.
for img in self:
cv2.imshow('frame', img)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
def view_frame(self, idx):
"""View a single frame by index"""
I = self[idx]
cv2.imshow('frame', I)
cv2.waitKey(0)
cv2.destroyAllWindows()