This repository has been archived by the owner on Dec 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 464
/
Copy pathdqn_agent.py
113 lines (90 loc) · 4.68 KB
/
dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import QHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters, \
MiddlewareScheme
from rl_coach.core_types import EnvironmentSteps
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
from rl_coach.schedules import LinearSchedule
class DQNAlgorithmParameters(AlgorithmParameters):
def __init__(self):
super().__init__()
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
self.num_consecutive_playing_steps = EnvironmentSteps(4)
self.discount = 0.99
self.supports_parameter_noise = True
class DQNNetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium)
self.heads_parameters = [QHeadParameters()]
self.optimizer_type = 'Adam'
self.batch_size = 32
self.replace_mse_with_huber_loss = True
self.create_target_network = True
self.should_get_softmax_probabilities = False
class DQNAgentParameters(AgentParameters):
def __init__(self):
super().__init__(algorithm=DQNAlgorithmParameters(),
exploration=EGreedyParameters(),
memory=ExperienceReplayParameters(),
networks={"main": DQNNetworkParameters()})
self.exploration.epsilon_schedule = LinearSchedule(1, 0.1, 1000000)
self.exploration.evaluation_epsilon = 0.05
@property
def path(self):
return 'rl_coach.agents.dqn_agent:DQNAgent'
# Deep Q Network - https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
class DQNAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
@property
def is_on_policy(self) -> bool:
return False
def select_actions(self, next_states, q_st_plus_1):
return np.argmax(q_st_plus_1, 1)
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
# for the action we actually took, the error is:
# TD error = r + discount*max(q_st_plus_1) - q_st
# # for all other actions, the error is 0
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
selected_actions = self.select_actions(batch.next_states(network_keys), q_st_plus_1)
# add Q value samples for logging
self.q_values.add_sample(TD_targets)
# only update the action that we have actually done in this transition
TD_errors = []
for i in range(batch.size):
new_target = batch.rewards()[i] +\
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * q_st_plus_1[i][selected_actions[i]]
TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]]))
TD_targets[i, batch.actions()[i]] = new_target
# update errors in prioritized replay buffer
importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch)
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
importance_weights=importance_weights)
total_loss, losses, unclipped_grads = result[:3]
return total_loss, losses, unclipped_grads