-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathtrain.py
230 lines (197 loc) · 9.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#coding=utf-8
import os
import datetime
import argparse
import logging
import pandas as pd
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torch.utils.data as torchdata
from torchvision import datasets, models
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
from transforms import transforms
from utils.train_model import train
from models.LoadModel import MainModel
from config import LoadConfig, load_data_transformers
from utils.dataset_DCL import collate_fn4train, collate_fn4val, collate_fn4test, collate_fn4backbone, dataset
import pdb
os.environ['CUDA_DEVICE_ORDRE'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
# parameters setting
def parse_args():
parser = argparse.ArgumentParser(description='dcl parameters')
parser.add_argument('--data', dest='dataset',
default='CUB', type=str)
parser.add_argument('--save', dest='resume',
default=None,
type=str)
parser.add_argument('--backbone', dest='backbone',
default='resnet50', type=str)
parser.add_argument('--auto_resume', dest='auto_resume',
action='store_true')
parser.add_argument('--epoch', dest='epoch',
default=360, type=int)
parser.add_argument('--tb', dest='train_batch',
default=16, type=int)
parser.add_argument('--vb', dest='val_batch',
default=512, type=int)
parser.add_argument('--sp', dest='save_point',
default=5000, type=int)
parser.add_argument('--cp', dest='check_point',
default=5000, type=int)
parser.add_argument('--lr', dest='base_lr',
default=0.0008, type=float)
parser.add_argument('--lr_step', dest='decay_step',
default=60, type=int)
parser.add_argument('--cls_lr_ratio', dest='cls_lr_ratio',
default=10.0, type=float)
parser.add_argument('--start_epoch', dest='start_epoch',
default=0, type=int)
parser.add_argument('--tnw', dest='train_num_workers',
default=16, type=int)
parser.add_argument('--vnw', dest='val_num_workers',
default=32, type=int)
parser.add_argument('--detail', dest='discribe',
default='', type=str)
parser.add_argument('--size', dest='resize_resolution',
default=512, type=int)
parser.add_argument('--crop', dest='crop_resolution',
default=448, type=int)
parser.add_argument('--cls_2', dest='cls_2',
action='store_true')
parser.add_argument('--cls_mul', dest='cls_mul',
action='store_true')
parser.add_argument('--swap_num', default=[7, 7],
nargs=2, metavar=('swap1', 'swap2'),
type=int, help='specify a range')
args = parser.parse_args()
return args
def auto_load_resume(load_dir):
folders = os.listdir(load_dir)
date_list = [int(x.split('_')[1].replace(' ',0)) for x in folders]
choosed = folders[date_list.index(max(date_list))]
weight_list = os.listdir(os.path.join(load_dir, choosed))
acc_list = [x[:-4].split('_')[-1] if x[:7]=='weights' else 0 for x in weight_list]
acc_list = [float(x) for x in acc_list]
choosed_w = weight_list[acc_list.index(max(acc_list))]
return os.path.join(load_dir, choosed, choosed_w)
if __name__ == '__main__':
args = parse_args()
print(args, flush=True)
Config = LoadConfig(args, 'train')
Config.cls_2 = args.cls_2
Config.cls_2xmul = args.cls_mul
assert Config.cls_2 ^ Config.cls_2xmul
transformers = load_data_transformers(args.resize_resolution, args.crop_resolution, args.swap_num)
# inital dataloader
train_set = dataset(Config = Config,\
anno = Config.train_anno,\
common_aug = transformers["common_aug"],\
swap = transformers["swap"],\
totensor = transformers["train_totensor"],\
train = True)
trainval_set = dataset(Config = Config,\
anno = Config.train_anno,\
common_aug = transformers["None"],\
swap = transformers["None"],\
totensor = transformers["val_totensor"],\
train = False,
train_val = True)
val_set = dataset(Config = Config,\
anno = Config.val_anno,\
common_aug = transformers["None"],\
swap = transformers["None"],\
totensor = transformers["test_totensor"],\
test=True)
dataloader = {}
dataloader['train'] = torch.utils.data.DataLoader(train_set,\
batch_size=args.train_batch,\
shuffle=True,\
num_workers=args.train_num_workers,\
collate_fn=collate_fn4train if not Config.use_backbone else collate_fn4backbone,
drop_last=True if Config.use_backbone else False,
pin_memory=True)
setattr(dataloader['train'], 'total_item_len', len(train_set))
dataloader['trainval'] = torch.utils.data.DataLoader(trainval_set,\
batch_size=args.val_batch,\
shuffle=False,\
num_workers=args.val_num_workers,\
collate_fn=collate_fn4val if not Config.use_backbone else collate_fn4backbone,
drop_last=True if Config.use_backbone else False,
pin_memory=True)
setattr(dataloader['trainval'], 'total_item_len', len(trainval_set))
setattr(dataloader['trainval'], 'num_cls', Config.numcls)
dataloader['val'] = torch.utils.data.DataLoader(val_set,\
batch_size=args.val_batch,\
shuffle=False,\
num_workers=args.val_num_workers,\
collate_fn=collate_fn4test if not Config.use_backbone else collate_fn4backbone,
drop_last=True if Config.use_backbone else False,
pin_memory=True)
setattr(dataloader['val'], 'total_item_len', len(val_set))
setattr(dataloader['val'], 'num_cls', Config.numcls)
cudnn.benchmark = True
print('Choose model and train set', flush=True)
model = MainModel(Config)
# load model
if (args.resume is None) and (not args.auto_resume):
print('train from imagenet pretrained models ...', flush=True)
else:
if not args.resume is None:
resume = args.resume
print('load from pretrained checkpoint %s ...'% resume, flush=True)
elif args.auto_resume:
resume = auto_load_resume(Config.save_dir)
print('load from %s ...'%resume, flush=True)
else:
raise Exception("no checkpoints to load")
model_dict = model.state_dict()
pretrained_dict = torch.load(resume)
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Set cache dir', flush=True)
time = datetime.datetime.now()
filename = '%s_%d%d%d_%s'%(args.discribe, time.month, time.day, time.hour, Config.dataset)
save_dir = os.path.join(Config.save_dir, filename)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model.cuda()
model = nn.DataParallel(model)
# optimizer prepare
if Config.use_backbone:
ignored_params = list(map(id, model.module.classifier.parameters()))
else:
ignored_params1 = list(map(id, model.module.classifier.parameters()))
ignored_params2 = list(map(id, model.module.classifier_swap.parameters()))
ignored_params3 = list(map(id, model.module.Convmask.parameters()))
ignored_params = ignored_params1 + ignored_params2 + ignored_params3
print('the num of new layers:', len(ignored_params), flush=True)
base_params = filter(lambda p: id(p) not in ignored_params, model.module.parameters())
lr_ratio = args.cls_lr_ratio
base_lr = args.base_lr
if Config.use_backbone:
optimizer = optim.SGD([{'params': base_params},
{'params': model.module.classifier.parameters(), 'lr': base_lr}], lr = base_lr, momentum=0.9)
else:
optimizer = optim.SGD([{'params': base_params},
{'params': model.module.classifier.parameters(), 'lr': lr_ratio*base_lr},
{'params': model.module.classifier_swap.parameters(), 'lr': lr_ratio*base_lr},
{'params': model.module.Convmask.parameters(), 'lr': lr_ratio*base_lr},
], lr = base_lr, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.decay_step, gamma=0.1)
# train entry
train(Config,
model,
epoch_num=args.epoch,
start_epoch=args.start_epoch,
optimizer=optimizer,
exp_lr_scheduler=exp_lr_scheduler,
data_loader=dataloader,
save_dir=save_dir,
data_size=args.crop_resolution,
savepoint=args.save_point,
checkpoint=args.check_point)