forked from gilbeckers/MultiPersonMatching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaffine_transformation.py
96 lines (73 loc) · 3.58 KB
/
affine_transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import logging
logger = logging.getLogger("pose_match")
def find_transformation(model_features, input_features):
# Zoek 2D affine transformatie matrix om scaling, rotatatie en translatie te beschrijven tussen model en input
# 2x2 matrix werkt niet voor translaties
# Pad the data with ones, so that our transformation can do translations too
pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) # horizontaal stacken
unpad = lambda x: x[:, :-1]
# It needs to be checked if a (0,0) row is present due to undetected body-parts
# Initially undetected features are accepted in both the input & model pose
# But, before finding the affine transformation these are filterd out
input_counter = 0
# List with indices of all the (0,0)-rows
# This is important because they need to
# be removed before finding the affine transformation
# But before returning to caller, they should be restored at the same place.
# Because the correspondence of the points needs to be preserved
nan_indices = []
#print("inputttt: " , input_features)
# input_features_zonder_nan = []
# model_features_zonder_nan = []
# for in_feature in input_features:
# if (in_feature[0] == 0) and (in_feature[1] == 0): # is a (0,0) feature
# nan_indices.append(input_counter)
# else:
# input_features_zonder_nan.append([in_feature[0], in_feature[1]])
# model_features_zonder_nan.append([model_features[input_counter][0], model_features[input_counter][1]])
# input_counter = input_counter+1
#
# input_features = np.array(input_features_zonder_nan)
# model_features = np.array(model_features_zonder_nan)
# padden:
# naar vorm [ x x 0 1]
Y = pad(model_features)
X = pad(input_features)
# Solve the least squares problem X * A = Y
# to find our transformation matrix A and then we can display the input on the model = Y'
A, res, rank, s = np.linalg.lstsq(X, Y)
transform = lambda x: unpad(np.dot(pad(x), A))
input_transform = transform(input_features)
# Restore the (0,0) rows
# TODO: maybe too much looping ..
# TODO: convert van matrix->list->matrix ?? crappy
# Note!: werkt enkel goed als nan_indices gesort is van klein naar groot!! anders kans over index out-of-bounds
input_transform_list = input_transform.tolist()
for index in nan_indices:
input_transform_list.insert(index, [0,0])
input_transform = np.array(input_transform_list)
A[np.abs(A) < 1e-10] = 0 # set really small values to zero
return (input_transform, A)
#TODO oude functie voor case waar enkel transformatie voor de fixed-points wordt berekend. (OUD)
def calcTransformationMatrix_fixed_points(model, input, secondary):
# Zoek 2D affine transformatie matrix om scaling, rotatatie en translatie te beschrijven tussen model en input
# 2x2 matrix werkt niet voor translaties
# Pad the data with ones, so that our transformation can do translations too
n = model.shape[0]
pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) # horizontaal stacken
unpad = lambda x: x[:, :-1]
# padden:
# naar vorm [ x x 0 1]
X = pad(model)
Y = pad(input)
# print(X)
# print(Y)
# Solve the least squares problem X * A = Y
# to find our transformation matrix A
A, res, rank, s = np.linalg.lstsq(X, Y)
transform = lambda x: unpad(np.dot(pad(x), A))
#modelTransform = transform(model)
modelTransform = transform(secondary)
A[np.abs(A) < 1e-10] = 0 # set really small values to zero
return (modelTransform, A)