forked from gilbeckers/MultiPersonMatching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_match.py
614 lines (474 loc) · 30 KB
/
pose_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import collections
import normalising
import prepocessing
import affine_transformation
import pose_comparison
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import logging
import numpy as np
import proc_do_it
import draw_humans
import matplotlib._png as png
logger = logging.getLogger("pose_match")
# Init the returned tuple
MatchResult = collections.namedtuple("MatchResult", ["match_bool", "error_score", "input_transformation"])
class MatchCombo(object):
def __init__(self, error_score, input_id, model_id, model_features, input_features, input_transformation):
self.error_score = error_score
self.input_id = input_id
self.model_id = model_id
self.model_features = model_features # niet noodzaakelijk voor logica, wordt gebruikt voor plotjes
self.input_features = input_features # same
self.input_transformation = input_transformation
'''
Description single_person(model_features, input_features):
GOAL: Decides if the inputpose matches with the modelpose.
Both valid and unvalid modelposes are allowed, that is, modelposes with no undetected body parts are also allowed.
If a unvalid model pose is used, the inputpose is adjusted and the matching continues.
The inputpose is also allowed to contain a number of undetected body-parts.
These undetected features are marked as (0,0). The algorithm is designed to handle these incomplete situations as follow:
In order to proceed the matching with these undetected points, a copy is made of the model pose
where the corresponding undetected points of the input pose are also set to (0,0).
-- So, the inputpose and modelpose_copy still have the same length of features (18) and also the same
amount of undetected features. --
Later, before the affine transformation is found, the undetected features are temporarily filtered out.
In this way these origin points don't influence the least-squares algorithm.
In case of undetected features in the inputpose, one should care of the following:
NOTE 1: The (0,0) points can't just be deleted because
without them the feature-arrays would become ambigu. (the correspondence between model and input)
NOTE 2: In order to disregard the undetected feauters of the inputpose, the corresponding modelpose features
are also altered to (0,0). Because we don't want the loose the original information of the complete modelpose,
first a local copy is made of the modelpose before the altering. The rest of the function (the actual matching)
uses this copy. At the end, the original (the unaltered version) model is returned, so the next step in the pipeline
still has all the original data.
NOTE 3: the acceptation and introduction of (0,0) points is a danger for our current normalisation
These particular origin points should not influence the normalisation
(which they do if we neglect them, xmin and ymin you know ... )
Parameters:
Takes two parameters, model name and input name.
Both have a .json file in json_data and a .jpg or .png in image_data
@:param model_features:
@:param input_features:
@:param normalise:
Returns:
@:returns result matching
@:returns error_score
@:returns input_transformation
@:returns model_features => is needed in multi_person2() and when (0,0) are added to modelpose
'''
def single_person(model_features, input_features, normalise=True):
# Filter the undetected features and mirror them in the other pose
(input_features_copy, model_features_copy) = prepocessing.handle_undetected_points(input_features, model_features)
if (normalise):
model_features_copy = normalising.feature_scaling(model_features_copy)
input_features_copy = normalising.feature_scaling(input_features_copy)
#Split features in three parts
(model_face, model_torso, model_legs) = prepocessing.split_in_face_legs_torso(model_features_copy)
(input_face, input_torso, input_legs) = prepocessing.split_in_face_legs_torso(input_features_copy)
# Zoek transformatie om input af te beelden op model
# Returnt transformatie matrix + afbeelding/image van input op model
(input_transformed_face, transformation_matrix_face) = affine_transformation.find_transformation(model_face, input_face)
(input_transformed_torso, transformation_matrix_torso) = affine_transformation.find_transformation(model_torso, input_torso)
(input_transformed_legs, transformation_matrix_legs) = affine_transformation.find_transformation(model_legs, input_legs)
# Wrapped the transformed input in one whole pose
input_transformation = prepocessing.unsplit(input_transformed_face, input_transformed_torso, input_transformed_legs)
# In case of no normalisation, return here (ex; plotting)
# Without normalisation the thresholds don't say anything
# -> so comparison is useless
if(not normalise):
result = MatchResult(None,
error_score=0,
input_transformation=input_transformation)
return result
max_euclidean_error_face = pose_comparison.max_euclidean_distance(model_face, input_transformed_face)
max_euclidean_error_torso = pose_comparison.max_euclidean_distance(model_torso, input_transformed_torso)
max_euclidean_error_legs = pose_comparison.max_euclidean_distance(model_legs, input_transformed_legs)
max_euclidean_error_shoulders = pose_comparison.max_euclidean_distance_shoulders(model_torso, input_transformed_torso)
######### THE THRESHOLDS #######
eucl_dis_tresh_torso = 0.11 #0.065 of 0.11 ??
rotation_tresh_torso = 40
eucl_dis_tresh_legs = 0.055
rotation_tresh_legs = 40
eucld_dis_shoulders_tresh = 0.063
################################
result_torso = pose_comparison.decide_torso_shoulders_incl(max_euclidean_error_torso, transformation_matrix_torso,
eucl_dis_tresh_torso, rotation_tresh_torso,
max_euclidean_error_shoulders, eucld_dis_shoulders_tresh)
result_legs = pose_comparison.decide_legs(max_euclidean_error_legs, transformation_matrix_legs,
eucl_dis_tresh_legs, rotation_tresh_legs)
#TODO: construct a solid score algorithm
error_score = (max_euclidean_error_torso + max_euclidean_error_legs)/2.0
result = MatchResult((result_torso and result_legs),
error_score=error_score,
input_transformation=input_transformation)
return result
# De eerste naive versie van het algoritme voor sinle-person pose matching
def single_person_zonder_split(model_features, input_features, normalise=True):
# Filter the undetected features and mirror them in the other pose
#(input_features_copy, model_features_copy) = prepocessing.handle_undetected_points(input_features, model_features)
if (normalise):
model_features = normalising.feature_scaling(model_features)
input_features = normalising.feature_scaling(input_features)
# Zoek transformatie om input af te beelden op model
# Returnt transformatie matrix + afbeelding/image van input op model
(input_transformed, transformation_matrix) = affine_transformation.find_transformation(model_features, input_features)
max_euclidean = pose_comparison.max_euclidean_distance(model_features, input_transformed)
result = MatchResult(True,
error_score=max_euclidean,
input_transformation=input_transformed)
return result
#Plot the calculated transformation on the model image
#And some other usefull plots for debugging
#NO NORMALIZING IS DONE HERE BECAUSE POINTS ARE PLOTTED ON THE ORIGINAL PICTURES!
def plot_single_person(model_features, input_features, model_image_name, input_image_name, input_title = "input", model_title="model",
transformation_title="transformed input -incl. split()"):
# Filter the undetected features and mirror them in the other pose
(input_features_copy, model_features_copy) = prepocessing.handle_undetected_points(input_features, model_features)
# plot vars
markersize = 3
#Load images
# model_image = plt.imread(model_image_name)
# input_image = plt.imread(input_image_name)
# Split features in three parts
(model_face, model_torso, model_legs) = prepocessing.split_in_face_legs_torso(model_features_copy)
(input_face, input_torso, input_legs) = prepocessing.split_in_face_legs_torso(input_features_copy)
# Zoek transformatie om input af te beelden op model
# Returnt transformatie matrix + afbeelding/image van input op model
(input_transformed_face, transformation_matrix_face) = affine_transformation.find_transformation(model_face,
input_face)
(input_transformed_torso, transformation_matrix_torso) = affine_transformation.find_transformation(model_torso,
input_torso)
(input_transformed_legs, transformation_matrix_legs) = affine_transformation.find_transformation(model_legs,
input_legs)
whole_input_transform = prepocessing.unsplit(input_transformed_face, input_transformed_torso,
input_transformed_legs)
model_image = plt.imread(model_image_name) #png.read_png_int(model_image_name) #plt.imread(model_image_name)
input_image = plt.imread(input_image_name) #png.read_png_int(input_image_name) #plt.imread(input_image_name)
model_image = draw_humans.draw_humans(model_image, model_features, True) # plt.imread(model_image_name)
input_image = draw_humans.draw_humans(input_image, input_features, True) # plt.imread(input_image_name)
input_trans_image = draw_humans.draw_square(plt.imread(model_image_name), model_features)
input_trans_image = draw_humans.draw_humans(input_trans_image, whole_input_transform,
True) # plt.imread(input_image_name) png.read_png_int(model_image_name)
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(14, 6))
implot = ax1.imshow(model_image)
plt.axis('off')
#ax1.set_title(model_image_name + ' (model)')
ax1.set_title(model_title)
ax1.axis('off')
# ax1.plot(*zip(*model_features_copy), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
# red_patch = mpatches.Patch(color='magenta', label='model')
# ax1.legend(handles=[red_patch])
#ax2.set_title(input_image_name + ' (input)')
ax2.set_title(input_title)
ax2.axis('off')
ax2.imshow(input_image)
# ax2.plot(*zip(*input_features_copy), marker='o', color='r', ls='', ms=markersize)
# ax2.legend(handles=[mpatches.Patch(color='red', label='input')])
ax3.set_title(transformation_title)
ax3.axis('off')
ax3.imshow(input_trans_image)
# ax3.plot(*zip(*model_features_copy), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
# ax3.plot(*zip(*whole_input_transform), marker='o', color='b', ls='', ms=markersize)
# ax3.legend(handles=[mpatches.Patch(color='blue', label='transformed input'), mpatches.Patch(color='magenta', label='model')])
plot_name = model_image_name.split("/")[-1] + "_" + input_image_name.split("/")[-1]
plt.savefig('./plots/' + plot_name + '.png', bbox_inches='tight')
plt.show(block=False)
def plot_single_person_zonder_split(model_features, input_features, model_image_name, input_image_name, input_title = "input", model_title="model",
transformation_title="transformed input -excl. split()"): #-excl. split()
# plot vars
markersize = 3
# Zoek transformatie om input af te beelden op model
# Returnt transformatie matrix + afbeelding/image van input op model
(input_transformed, transformation_matrix) = affine_transformation.find_transformation(model_features,
input_features)
model_image = plt.imread(model_image_name)
input_image = plt.imread(input_image_name)
#Load images
model_image = draw_humans.draw_humans(model_image,model_features)#plt.imread(model_image_name)
input_image = draw_humans.draw_humans(input_image,input_features, True)#plt.imread(input_image_name)
input_trans_image = draw_humans.draw_square(plt.imread(model_image_name), model_features)
input_trans_image = draw_humans.draw_humans(input_trans_image, input_transformed, True) # plt.imread(input_image_name)
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(14, 6))
plt.axis('off')
ax1.imshow(model_image)
ax1.axis('off')
#ax1.set_title(model_image_name + ' (model)')
ax1.set_title(model_title)
#ax1.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
# red_patch = mpatches.Patch(color='magenta', label='model')
# ax1.legend(handles=[red_patch])
#ax2.set_title(input_image_name + ' (input)')
ax2.set_title(input_title)
ax2.axis('off')
ax2.imshow(input_image)
# ax2.plot(*zip(*input_features), marker='o', color='r', ls='', ms=markersize)
# ax2.legend(handles=[mpatches.Patch(color='red', label='input')])
ax3.set_title(transformation_title)
ax3.axis('off')
ax3.imshow(input_trans_image)
# ax3.plot(*zip(*input_transformed), marker='s', color='y', ls='', ms=4, )
# ax3.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
#
# ax3.legend(handles=[mpatches.Patch(color='y', label='transformed input'), mpatches.Patch(color='magenta', label='model')])
plot_name = model_image_name.split("/")[-1] + "_" + input_image_name.split("/")[-1]
plt.savefig('./plots/' + plot_name + '.png', bbox_inches='tight')
plt.show(block=False)
'''
Description multi_person():
This function is used in the first (simple) case: MODELS SEPARATELY (mutual orientation of different poses is not checked in this simple case)
The human poses in the image have no relation with each other and they are considered separately
Foreach modelpose (in models_poses) a matching inputpose (in input_poses) is searched
Only if for each modelpose matches with on of the inputposes in input_poses, a global match is achieved.
Parameters:
@:param models_poses: Takes an array of models as input because every pose that needs to be mimic has it's own model
@:param input_poses: The input is one json file. This represents an image of multiple persons and they each try to mimic one of the poses in model
Returns:
@:returns False : in case GLOBAL MATCH FAILED
@:returns list_of_all_matches : (List of MatchCombo objects) each model 1 match with a input (this match is wrapped in a MatchCombo object)
'''
# THE NEW one: for every modelpose , a matching input is seeked
# Enkel zo kan je een GLOBAL MATCH FAILED besluiten na dat er geen matching inputpose is gevonden voor een modelpose
def multi_person(models_poses, input_poses, model_image_name, input_image_name):
logger.info(" Multi-person matching...")
logger.info(" amount of models: %d", len(models_poses))
logger.info(" amount of inputs: %d", len(input_poses))
# Some safety checks first ..
if(len(input_poses)== 0 or len(models_poses) == 0):
logger.error(" Multi person match failed. Inputposes or modelposes are empty")
return False
# Then check if there are equal or more input poses than model poses
# When the amount of input poses is smaller than model poses a global match FAILED is decided
# Note: amount of models may be smaller than amount of input models:
# -> ex in case of people on the background which are also detected by openpose => background noise
# -> TODO: ? foreground detection necessary (in case less models than there are inputs) NOT SURE ...
if(len(input_poses) < len(models_poses)):
logger.error(" Multi person match failed. Amount of input poses < model poses")
return False
# When there are more inputposes than modelsposes, print warning
# I this case pose match still needs to proceed,
# BUT it's possible that a background pose is matched with one of the proposed modelposes!! (something we don't want)
if (len(input_poses) > len(models_poses)):
logger.warning(" !! WARNING !! Amount of input poses > model poses")
#Continiue
#return False
# List of MatchCombo objects: each model has a 0 or 1 or more matches with a input (this match is wrapped in a MatchCombo object)
# -> we only allow the case with 1 match!
# 1. cases with more than 1 matches are reduces with only 1 match (the best-match)
# 2. case with 0 match result in a GLOBAL MATCH FAILED; because the modelpose is not found in the input
# If at the end of the whole matching iteration,
# there is a MatchCombo == None => a model is failed to match whith the possible inputposes SO global match failed
#
list_of_all_matches = []
# The MatchCombo which links a modelpose with a matching inputpose
# This is what we want to maximise ie: the best match of all possible matches found
best_match_combo = None
# Iterate over the model poses
# TODO: improve search algorithm (not necessary i guess, as it is only illustrative)
counter_model_pose = 1
logger.debug(" ->Searching a best-match for each model in the modelposes ...")
for model_pose in models_poses:
logger.debug(" Iterate for modelpose(%d)", counter_model_pose)
counter_input_pose = 1
for input_pose in input_poses:
logger.debug(" @@@@ Matching model(%d) with input(%d) @@@@", counter_model_pose, counter_input_pose)
# Do single pose matching
(result_match, error_score, input_transformation) = single_person(model_pose, input_pose, True)
if (result_match):
match_combo = MatchCombo(error_score, counter_input_pose, counter_model_pose,model_pose, input_pose, input_transformation)
logger.info(" Match: %s ModelPose(%d)->InputPose(%d)", result_match, counter_model_pose, counter_input_pose)
# If current MatchCombo object is empty, init it
if best_match_combo is None:
best_match_combo = match_combo
# If new match is better (=has a lower error_score) than current best_match, overwrite
elif best_match_combo.error_score > match_combo.error_score:
best_match_combo = match_combo
counter_input_pose = counter_input_pose + 1
# If still no match is found (after looping over all the inputs); this model is not found in proposed inputposes
# This can mean only one thing:
# 1. The user(s) failed to mimic one of the proposed model poses
if(best_match_combo is None):
logger.info(" MATCH FAILED. No match found for modelpose(%d). User failed to match a modelpose ", counter_model_pose)
return False
# After comparing every possible models with a inputpose, append to match_list
list_of_all_matches.append(best_match_combo)
# And reset best_match field for next iteration
best_match_combo = None
counter_model_pose = counter_model_pose + 1
logger.info("-- multi_pose1(): looping over best-matches for producing plotjes:")
# Plotjes: affine transformation is calculated again but now without normalisation
for i in list_of_all_matches:
if i is not None:
(result, error_score, input_transformation) = single_person(i.model_features, i.input_features, False)
plot_match(i.model_features, i.input_features, input_transformation, model_image_name, input_image_name)
return list_of_all_matches
'''
Description multi_person2()
This function is used in the second (complex) case: The models are dependent of each other in space
Their relation in space is checked in the same way as in case of single_pose(),
but now a affine transformation of the total of all poses is calculated
First a multi_pose() is executed and a list of best_matches is achieved
Then all separate input poses are combined into one input_pose_transformed
This is the homography of all model poses displayed onto their best match inputpose.
-> The modelpose is superimposed onto his matching inputpose
This homography is calculated using only a translation and rotation, NO SCALING
Note that the input_transformed resulting from single_pose() is not used in this algorithm.
Final plots are only plotted if normalised is False
# DISCLAIMER on no-normalisation:
# It's normal that the plot is fucked up in case of undetected body parts in the input
# -> this is because no normalisation is done here (because of the plots)
# and thus these sneaky (0,0) points are not handled.
# TODO: maybe not include the (0,0) handler only the normalising part??
A word on input poses with undetected body parts [ (0,0) points ]:
Input poses with a certain amount of undetected body parts are allowed.
It is even so that, if a best match is found for a model,
in the second step (procrustes) the undetected body parts
are overwritten with those of the model.
Parameters:
@:param model_poses: Model containing multiple modelposes (one json file = one image because poses are seen as one whole)
@:param input_poses: The input is one json file. This represents an image of multiple persons and
together they try to mimic the whole model.
@:param normalise: Default is True. In case of False; the max euclidean distance is calculated and reported
In case of True; the result in plotted on the images!
Returns:
@:returns False : in case GLOBAL MATCH FAILED
@:returns True : Match!
'''
#TODO fine-tune returns
#TODO optimaliseren voor geval van normalise! nu ist 2 in 1, ma voor productie is enkel normalise nodig in feite (ook ni helemaal waar -> feedback mss)
def multi_person2(model_poses, input_poses, model_image_name, input_image_name, normalise=True):
# Find for each model_pose the best match input_pose
# returns a list of best matches !! WITH normalisation !!
# TODO fine-tune return tuple
result = multi_person(model_poses, input_poses, model_image_name, input_image_name)
if(result is False):
# Minimum one model pose is not matched with a input pose
logger.error("Multi-person step1 match failed!")
return False
aantal_models = len(result)
input_transformed_combined = np.zeros((18*aantal_models, 2))
# The new input_transformed; contains all poses and wrapped in one total pose.
# This input_transformed_combined is achieved by superimposing all the model poses on their corresponding inputpose
input_transformed_combined = []
updated_models_combined = []
# Loop over the best-matches
# [modelpose 1 -> inputpose x ; modelpose2 -> inputpose y; ...]
logger.info("-- multi_pose2(): looping over best-matches for procrustes:")
for best_match in result:
# First check for undetected body parts. If present=> make corresponding point in model also (0,0)
# We can know strip them from our poses because we don't use split() for affine trans
# TODO: deze clean updated_model_pose wordt eigenlijk al eens berekent in single_pose()
# -> loopke hier opnieuw is stevig redundant
# make a array with the indecex of undetected points
indexes_undetected_points = []
if np.any(best_match.input_features[:] == [0, 0]):
assert True
counter = 0
for feature in best_match.input_features:
if feature[0] == 0 and feature[1] == 0: # (0,0)
indexes_undetected_points.append(counter)
#logger.warning(" Undetected body part in input: index(%d) %s", counter,prepocessing.get_bodypart(counter))
best_match.model_features[counter][0] = 0
best_match.model_features[counter][1] = 0
counter = counter + 1
best_match.input_features = best_match.input_features[( best_match.input_features[:, 0] != 0) & (best_match.input_features[:, 1] != 0)]
best_match.model_features = best_match.model_features[( best_match.model_features[:, 0] != 0) & (best_match.model_features[:, 1] != 0)]
# Note1: the input_transformed from single_pose() is not used!!!
input_transformed = proc_do_it.superimpose(best_match.input_features, best_match.model_features, input_image_name, model_image_name)
input_transformed_combined.append(np.array(input_transformed))
updated_models_combined.append(np.array(best_match.model_features))
#logger.info("inputtt %s", str(input_transformed))
#logger.info("modeelll %s ", str(best_match.model_features))
assert len(input_transformed_combined) == len(model_poses)
# TODO: harded code indexen weg doen
# TODO: transpose van ne lijst? Mss beter toch met np.array() werken.. maar hoe init'en?
# TODO : hier is wa refactoring/optimalisatie nodig ...
#Lijst vervormen naar matrix
input_transformed_combined = np.vstack([input_transformed_combined[0], input_transformed_combined[1]])
#model_poses = np.vstack([model_poses[0], model_poses[1]])
model_poses = np.vstack([updated_models_combined[0], updated_models_combined[1]])
# Redundant, wordt enkel gebruikt voor plotten
input_poses = np.vstack([input_poses[0], input_poses[1]])
print("-------trans: ", input_transformed_combined.shape)
if(normalise):
input_transformed_combined = normalising.feature_scaling(input_transformed_combined)
model_poses = normalising.feature_scaling(model_poses)
# Calc the affine trans of the whole
(full_transformation, A_matrix) = affine_transformation.find_transformation(model_poses, input_transformed_combined)
# TODO return True in case of match
if(normalise):
max_eucl_distance = pose_comparison.max_euclidean_distance(model_poses, input_transformed_combined)
logger.info("--->Max eucl distance: %s (thresh ca. 0.13)", str(max_eucl_distance)) # torso thresh is 0.11
markersize = 2
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(14, 6))
ax1.set_title('(input transformed (model superimposed on input )')
ax1.plot(*zip(*input_transformed_combined), marker='o', color='r', ls='', label='model', ms=markersize) # ms = markersize
ax2.set_title('(model)')
ax2.plot(*zip(*model_poses), marker='o', color='r', ls='', label='model', ms=markersize) # ms = markersize
ax3.set_title('(affine trans and model (red))')
ax3.plot(*zip(*full_transformation), marker='o', color='r', ls='', label='model', ms=markersize) # ms = markersize
ax3.plot(*zip(*model_poses), marker='o', color='b', ls='', label='model',
ms=markersize) # ms = markersize
ax = plt.gca()
ax.invert_yaxis()
#plt.show()
plt.draw()
else:
logger.info("-- multi_pose2(): procrustes plotjes incoming ")
plot_multi_pose(model_poses, input_poses, full_transformation,
model_image_name, input_image_name, "input poses", "full procrustes")
plot_multi_pose(model_poses, input_transformed_combined, full_transformation,
model_image_name, input_image_name, "superimposed model on input", "full procrustes")
#Block plots
plt.show()
return True
#Plots all Three: model, input and transformation
def plot_multi_pose(model_features, input_features, full_transform, model_image_name, input_image_name, text_input, text_transform):
# plot vars
markersize = 2
# Load images
model_image = plt.imread(model_image_name)
input_image = plt.imread(input_image_name)
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(14, 6))
implot = ax1.imshow(model_image)
ax1.set_title('(model)')
ax1.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
red_patch = mpatches.Patch(color='magenta', label='model')
#ax1.legend(handles=[red_patch])
ax2.set_title('('+text_input+')')
ax2.imshow(input_image)
ax2.plot(*zip(*input_features), marker='o', color='red', ls='', ms=markersize)
#ax2.legend(handles=[mpatches.Patch(color='blue', label='input')])
ax3.set_title('('+text_transform+')')
ax3.imshow(model_image)
ax3.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
ax3.plot(*zip(*full_transform), marker='o', color='blue', ls='', ms=markersize)
ax3.legend(handles=[mpatches.Patch(color='magenta', label='Model'), mpatches.Patch(color='blue', label='Input transformed')])
plt.draw()
#plt.show()
return
#Plots all Three: model, input and transformation
def plot_match(model_features, input_features, input_transform_features, model_image_name, input_image_name):
# plot vars
markersize = 2
# Load images
model_image = plt.imread(model_image_name)
input_image = plt.imread(input_image_name)
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(14, 6))
implot = ax1.imshow(model_image)
ax1.set_title('(model)')
ax1.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
red_patch = mpatches.Patch(color='magenta', label='model')
#ax1.legend(handles=[red_patch])
ax2.set_title('(input)')
ax2.imshow(input_image)
ax2.plot(*zip(*input_features), marker='o', color='red', ls='', ms=markersize)
#ax2.legend(handles=[mpatches.Patch(color='blue', label='input')])
ax3.set_title('Transformed input on model')
ax3.imshow(model_image)
ax3.plot(*zip(*model_features), marker='o', color='magenta', ls='', label='model', ms=markersize) # ms = markersize
ax3.plot(*zip(*input_transform_features), marker='o', color='blue', ls='', ms=markersize)
ax3.legend(handles=[mpatches.Patch(color='magenta', label='Model'), mpatches.Patch(color='blue', label='Input transformed')])
plt.draw()
#plt.show()
return