forked from adjidieng/DETM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
563 lines (506 loc) · 22.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#/usr/bin/python
from __future__ import print_function
import argparse
import torch
import pickle
import numpy as np
import os
import math
import random
import sys
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.io
import data
from sklearn.decomposition import PCA
from torch import nn, optim
from torch.nn import functional as F
from detm import DETM
from utils import nearest_neighbors, get_topic_coherence
parser = argparse.ArgumentParser(description='The Embedded Topic Model')
### data and file related arguments
parser.add_argument('--dataset', type=str, default='un', help='name of corpus')
parser.add_argument('--data_path', type=str, default='un/', help='directory containing data')
parser.add_argument('--emb_path', type=str, default='skipgram/embeddings.txt', help='directory containing embeddings')
parser.add_argument('--save_path', type=str, default='./results', help='path to save results')
parser.add_argument('--batch_size', type=int, default=1000, help='number of documents in a batch for training')
parser.add_argument('--min_df', type=int, default=100, help='to get the right data..minimum document frequency')
### model-related arguments
parser.add_argument('--num_topics', type=int, default=50, help='number of topics')
parser.add_argument('--rho_size', type=int, default=300, help='dimension of rho')
parser.add_argument('--emb_size', type=int, default=300, help='dimension of embeddings')
parser.add_argument('--t_hidden_size', type=int, default=800, help='dimension of hidden space of q(theta)')
parser.add_argument('--theta_act', type=str, default='relu', help='tanh, softplus, relu, rrelu, leakyrelu, elu, selu, glu)')
parser.add_argument('--train_embeddings', type=int, default=1, help='whether to fix rho or train it')
parser.add_argument('--eta_nlayers', type=int, default=3, help='number of layers for eta')
parser.add_argument('--eta_hidden_size', type=int, default=200, help='number of hidden units for rnn')
parser.add_argument('--delta', type=float, default=0.005, help='prior variance')
### optimization-related arguments
parser.add_argument('--lr', type=float, default=0.005, help='learning rate')
parser.add_argument('--lr_factor', type=float, default=4.0, help='divide learning rate by this')
parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train')
parser.add_argument('--mode', type=str, default='train', help='train or eval model')
parser.add_argument('--optimizer', type=str, default='adam', help='choice of optimizer')
parser.add_argument('--seed', type=int, default=2019, help='random seed (default: 1)')
parser.add_argument('--enc_drop', type=float, default=0.0, help='dropout rate on encoder')
parser.add_argument('--eta_dropout', type=float, default=0.0, help='dropout rate on rnn for eta')
parser.add_argument('--clip', type=float, default=0.0, help='gradient clipping')
parser.add_argument('--nonmono', type=int, default=10, help='number of bad hits allowed')
parser.add_argument('--wdecay', type=float, default=1.2e-6, help='some l2 regularization')
parser.add_argument('--anneal_lr', type=int, default=0, help='whether to anneal the learning rate or not')
parser.add_argument('--bow_norm', type=int, default=1, help='normalize the bows or not')
### evaluation, visualization, and logging-related arguments
parser.add_argument('--num_words', type=int, default=20, help='number of words for topic viz')
parser.add_argument('--log_interval', type=int, default=10, help='when to log training')
parser.add_argument('--visualize_every', type=int, default=1, help='when to visualize results')
parser.add_argument('--eval_batch_size', type=int, default=1000, help='input batch size for evaluation')
parser.add_argument('--load_from', type=str, default='', help='the name of the ckpt to eval from')
parser.add_argument('--tc', type=int, default=0, help='whether to compute tc or not')
args = parser.parse_args()
pca = PCA(n_components=2)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## set seed
np.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
## get data
# 1. vocabulary
print('Getting vocabulary ...')
data_file = os.path.join(args.data_path, 'min_df_{}'.format(args.min_df))
vocab, train, valid, test = data.get_data(data_file, temporal=True)
vocab_size = len(vocab)
args.vocab_size = vocab_size
# 1. training data
print('Getting training data ...')
train_tokens = train['tokens']
train_counts = train['counts']
train_times = train['times']
args.num_times = len(np.unique(train_times))
args.num_docs_train = len(train_tokens)
train_rnn_inp = data.get_rnn_input(
train_tokens, train_counts, train_times, args.num_times, args.vocab_size, args.num_docs_train)
# 2. dev set
print('Getting validation data ...')
valid_tokens = valid['tokens']
valid_counts = valid['counts']
valid_times = valid['times']
args.num_docs_valid = len(valid_tokens)
valid_rnn_inp = data.get_rnn_input(
valid_tokens, valid_counts, valid_times, args.num_times, args.vocab_size, args.num_docs_valid)
# 3. test data
print('Getting testing data ...')
test_tokens = test['tokens']
test_counts = test['counts']
test_times = test['times']
args.num_docs_test = len(test_tokens)
test_rnn_inp = data.get_rnn_input(
test_tokens, test_counts, test_times, args.num_times, args.vocab_size, args.num_docs_test)
test_1_tokens = test['tokens_1']
test_1_counts = test['counts_1']
test_1_times = test_times
args.num_docs_test_1 = len(test_1_tokens)
test_1_rnn_inp = data.get_rnn_input(
test_1_tokens, test_1_counts, test_1_times, args.num_times, args.vocab_size, args.num_docs_test)
test_2_tokens = test['tokens_2']
test_2_counts = test['counts_2']
test_2_times = test_times
args.num_docs_test_2 = len(test_2_tokens)
test_2_rnn_inp = data.get_rnn_input(
test_2_tokens, test_2_counts, test_2_times, args.num_times, args.vocab_size, args.num_docs_test)
## get embeddings
print('Getting embeddings ...')
emb_path = args.emb_path
vect_path = os.path.join(args.data_path.split('/')[0], 'embeddings.pkl')
vectors = {}
with open(emb_path, 'rb') as f:
for l in f:
line = l.decode().split()
word = line[0]
if word in vocab:
vect = np.array(line[1:]).astype(np.float)
vectors[word] = vect
embeddings = np.zeros((vocab_size, args.emb_size))
words_found = 0
for i, word in enumerate(vocab):
try:
embeddings[i] = vectors[word]
words_found += 1
except KeyError:
embeddings[i] = np.random.normal(scale=0.6, size=(args.emb_size, ))
embeddings = torch.from_numpy(embeddings).to(device)
args.embeddings_dim = embeddings.size()
print('\n')
print('=*'*100)
print('Training a Dynamic Embedded Topic Model on {} with the following settings: {}'.format(args.dataset.upper(), args))
print('=*'*100)
## define checkpoint
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
if args.mode == 'eval':
ckpt = args.load_from
else:
ckpt = os.path.join(args.save_path,
'detm_{}_K_{}_Htheta_{}_Optim_{}_Clip_{}_ThetaAct_{}_Lr_{}_Bsz_{}_RhoSize_{}_L_{}_minDF_{}_trainEmbeddings_{}'.format(
args.dataset, args.num_topics, args.t_hidden_size, args.optimizer, args.clip, args.theta_act,
args.lr, args.batch_size, args.rho_size, args.eta_nlayers, args.min_df, args.train_embeddings))
## define model and optimizer
if args.load_from != '':
print('Loading checkpoint from {}'.format(args.load_from))
with open(args.load_from, 'rb') as f:
model = torch.load(f)
else:
model = DETM(args, embeddings)
print('\nDETM architecture: {}'.format(model))
#model = nn.DataParallel(model)
model.to(device)
if args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
elif args.optimizer == 'adagrad':
optimizer = optim.Adagrad(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
elif args.optimizer == 'adadelta':
optimizer = optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
elif args.optimizer == 'rmsprop':
optimizer = optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
elif args.optimizer == 'asgd':
optimizer = optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
else:
print('Defaulting to vanilla SGD')
optimizer = optim.SGD(model.parameters(), lr=args.lr)
def train(epoch):
"""Train DETM on data for one epoch.
"""
model.train()
acc_loss = 0
acc_nll = 0
acc_kl_theta_loss = 0
acc_kl_eta_loss = 0
acc_kl_alpha_loss = 0
cnt = 0
indices = torch.randperm(args.num_docs_train)
indices = torch.split(indices, args.batch_size)
for idx, ind in enumerate(indices):
optimizer.zero_grad()
model.zero_grad()
data_batch, times_batch = data.get_batch(
train_tokens, train_counts, ind, args.vocab_size, args.emb_size, temporal=True, times=train_times)
sums = data_batch.sum(1).unsqueeze(1)
if args.bow_norm:
normalized_data_batch = data_batch / sums
else:
normalized_data_batch = data_batch
loss, nll, kl_alpha, kl_eta, kl_theta = model(data_batch, normalized_data_batch, times_batch, train_rnn_inp, args.num_docs_train)
loss.backward()
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
acc_loss += torch.sum(loss).item()
acc_nll += torch.sum(nll).item()
acc_kl_theta_loss += torch.sum(kl_theta).item()
acc_kl_eta_loss += torch.sum(kl_eta).item()
acc_kl_alpha_loss += torch.sum(kl_alpha).item()
cnt += 1
if idx % args.log_interval == 0 and idx > 0:
cur_loss = round(acc_loss / cnt, 2)
cur_nll = round(acc_nll / cnt, 2)
cur_kl_theta = round(acc_kl_theta_loss / cnt, 2)
cur_kl_eta = round(acc_kl_eta_loss / cnt, 2)
cur_kl_alpha = round(acc_kl_alpha_loss / cnt, 2)
lr = optimizer.param_groups[0]['lr']
print('Epoch: {} .. batch: {}/{} .. LR: {} .. KL_theta: {} .. KL_eta: {} .. KL_alpha: {} .. Rec_loss: {} .. NELBO: {}'.format(
epoch, idx, len(indices), lr, cur_kl_theta, cur_kl_eta, cur_kl_alpha, cur_nll, cur_loss))
cur_loss = round(acc_loss / cnt, 2)
cur_nll = round(acc_nll / cnt, 2)
cur_kl_theta = round(acc_kl_theta_loss / cnt, 2)
cur_kl_eta = round(acc_kl_eta_loss / cnt, 2)
cur_kl_alpha = round(acc_kl_alpha_loss / cnt, 2)
lr = optimizer.param_groups[0]['lr']
print('*'*100)
print('Epoch----->{} .. LR: {} .. KL_theta: {} .. KL_eta: {} .. KL_alpha: {} .. Rec_loss: {} .. NELBO: {}'.format(
epoch, lr, cur_kl_theta, cur_kl_eta, cur_kl_alpha, cur_nll, cur_loss))
print('*'*100)
def visualize():
"""Visualizes topics and embeddings and word usage evolution.
"""
model.eval()
with torch.no_grad():
alpha = model.mu_q_alpha
beta = model.get_beta(alpha)
print('beta: ', beta.size())
print('\n')
print('#'*100)
print('Visualize topics...')
#times = [0, 10, 40] #Use it when deal with task UN
times = [0, 10, 30] #Use it when deal with task ACL
topics_words = []
for k in range(args.num_topics):
for t in times:
gamma = beta[k, t, :]
top_words = list(gamma.cpu().numpy().argsort()[-args.num_words+1:][::-1])
topic_words = [vocab[a] for a in top_words]
topics_words.append(' '.join(topic_words))
print('Topic {} .. Time: {} ===> {}'.format(k, t, topic_words))
print('\n')
print('Visualize word embeddings ...')
queries = ['economic', 'assembly', 'security', 'management', 'debt', 'rights', 'africa']
#queries = ['africa', 'colonial', 'racist', 'democratic']
try:
embeddings = model.rho.weight # Vocab_size x E
except:
embeddings = model.rho # Vocab_size x E
neighbors = []
for word in queries:
print('word: {} .. neighbors: {}'.format(
word, nearest_neighbors(word, embeddings, vocab, args.num_words)))
print('#'*100)
# print('\n')
# print('Visualize word evolution ...')
# topic_0 = None ### k
# queries_0 = ['woman', 'gender', 'man', 'mankind', 'humankind'] ### v
# topic_1 = None
# queries_1 = ['africa', 'colonial', 'racist', 'democratic']
# topic_2 = None
# queries_2 = ['poverty', 'sustainable', 'trade']
# topic_3 = None
# queries_3 = ['soviet', 'convention', 'iran']
# topic_4 = None # climate
# queries_4 = ['environment', 'impact', 'threats', 'small', 'global', 'climate']
def _eta_helper(rnn_inp):
inp = model.q_eta_map(rnn_inp).unsqueeze(1)
hidden = model.init_hidden()
output, _ = model.q_eta(inp, hidden)
output = output.squeeze()
etas = torch.zeros(model.num_times, model.num_topics).to(device)
inp_0 = torch.cat([output[0], torch.zeros(model.num_topics,).to(device)], dim=0)
etas[0] = model.mu_q_eta(inp_0)
for t in range(1, model.num_times):
inp_t = torch.cat([output[t], etas[t-1]], dim=0)
etas[t] = model.mu_q_eta(inp_t)
return etas
def get_eta(source):
model.eval()
with torch.no_grad():
if source == 'val':
rnn_inp = valid_rnn_inp
return _eta_helper(rnn_inp)
else:
rnn_1_inp = test_1_rnn_inp
return _eta_helper(rnn_1_inp)
def get_theta(eta, bows):
model.eval()
with torch.no_grad():
inp = torch.cat([bows, eta], dim=1)
q_theta = model.q_theta(inp)
mu_theta = model.mu_q_theta(q_theta)
theta = F.softmax(mu_theta, dim=-1)
return theta
def get_completion_ppl(source):
"""Returns document completion perplexity.
"""
model.eval()
with torch.no_grad():
alpha = model.mu_q_alpha
if source == 'val':
indices = torch.split(torch.tensor(range(args.num_docs_valid)), args.eval_batch_size)
tokens = valid_tokens
counts = valid_counts
times = valid_times
eta = get_eta('val')
acc_loss = 0
cnt = 0
for idx, ind in enumerate(indices):
data_batch, times_batch = data.get_batch(
tokens, counts, ind, args.vocab_size, args.emb_size, temporal=True, times=times)
sums = data_batch.sum(1).unsqueeze(1)
if args.bow_norm:
normalized_data_batch = data_batch / sums
else:
normalized_data_batch = data_batch
eta_td = eta[times_batch.type('torch.LongTensor')]
theta = get_theta(eta_td, normalized_data_batch)
alpha_td = alpha[:, times_batch.type('torch.LongTensor'), :]
beta = model.get_beta(alpha_td).permute(1, 0, 2)
loglik = theta.unsqueeze(2) * beta
loglik = loglik.sum(1)
loglik = torch.log(loglik)
nll = -loglik * data_batch
nll = nll.sum(-1)
loss = nll / sums.squeeze()
loss = loss.mean().item()
acc_loss += loss
cnt += 1
cur_loss = acc_loss / cnt
ppl_all = round(math.exp(cur_loss), 1)
print('*'*100)
print('{} PPL: {}'.format(source.upper(), ppl_all))
print('*'*100)
return ppl_all
else:
indices = torch.split(torch.tensor(range(args.num_docs_test)), args.eval_batch_size)
tokens_1 = test_1_tokens
counts_1 = test_1_counts
tokens_2 = test_2_tokens
counts_2 = test_2_counts
eta_1 = get_eta('test')
acc_loss = 0
cnt = 0
indices = torch.split(torch.tensor(range(args.num_docs_test)), args.eval_batch_size)
for idx, ind in enumerate(indices):
data_batch_1, times_batch_1 = data.get_batch(
tokens_1, counts_1, ind, args.vocab_size, args.emb_size, temporal=True, times=test_times)
sums_1 = data_batch_1.sum(1).unsqueeze(1)
if args.bow_norm:
normalized_data_batch_1 = data_batch_1 / sums_1
else:
normalized_data_batch_1 = data_batch_1
eta_td_1 = eta_1[times_batch_1.type('torch.LongTensor')]
theta = get_theta(eta_td_1, normalized_data_batch_1)
data_batch_2, times_batch_2 = data.get_batch(
tokens_2, counts_2, ind, args.vocab_size, args.emb_size, temporal=True, times=test_times)
sums_2 = data_batch_2.sum(1).unsqueeze(1)
alpha_td = alpha[:, times_batch_2.type('torch.LongTensor'), :]
beta = model.get_beta(alpha_td).permute(1, 0, 2)
loglik = theta.unsqueeze(2) * beta
loglik = loglik.sum(1)
loglik = torch.log(loglik)
nll = -loglik * data_batch_2
nll = nll.sum(-1)
loss = nll / sums_2.squeeze()
loss = loss.mean().item()
acc_loss += loss
cnt += 1
cur_loss = acc_loss / cnt
ppl_dc = round(math.exp(cur_loss), 1)
print('*'*100)
print('{} Doc Completion PPL: {}'.format(source.upper(), ppl_dc))
print('*'*100)
return ppl_dc
def _diversity_helper(beta, num_tops):
list_w = np.zeros((args.num_topics, num_tops))
for k in range(args.num_topics):
gamma = beta[k, :]
top_words = gamma.cpu().numpy().argsort()[-num_tops:][::-1]
list_w[k, :] = top_words
list_w = np.reshape(list_w, (-1))
list_w = list(list_w)
n_unique = len(np.unique(list_w))
diversity = n_unique / (args.num_topics * num_tops)
return diversity
def get_topic_quality():
"""Returns topic coherence and topic diversity.
"""
model.eval()
with torch.no_grad():
alpha = model.mu_q_alpha
beta = model.get_beta(alpha)
print('beta: ', beta.size())
print('\n')
print('#'*100)
print('Get topic diversity...')
num_tops = 25
TD_all = np.zeros((args.num_times,))
for tt in range(args.num_times):
TD_all[tt] = _diversity_helper(beta[:, tt, :], num_tops)
TD = np.mean(TD_all)
print('Topic Diversity is: {}'.format(TD))
print('\n')
print('Get topic coherence...')
print('train_tokens: ', train_tokens[0])
TC_all = []
cnt_all = []
max_all = []
topic_ch_41 = []
for tt in range(args.num_times):
print('*'*10)
print('Time number:',tt)
tc, cnt, max_tc, tc_return = get_topic_coherence(beta[:, tt, :].cpu().numpy(), train_tokens, vocab)
TC_all.append(tc)
cnt_all.append(cnt)
max_all.append(max_tc)
topic_ch_41.append(tc_return)
print()
print('#'*100)
print('TC_all: ', TC_all)
TC = np.mean(TC_all)
print('Mean_TC:',TC)
TC_all = torch.tensor(TC_all)
print('TC_all_size: ', TC_all.size())
print("Filtered_TC:", max_all)
Max = np.mean(max_all)
#Max_tc = np.max(max_all)
print("Mean_Filtered_TC:", Max)
#print('Max_Max_TC:', Max_tc)
print('TC_all: {}'.format(TC_all))
print('\n')
print('Get topic quality...')
#quality = tc * diversity
#quality = TC_all * TD
quality = np.multiply(TC_all, TD)
print('Topic Quality is: {}'.format(quality))
mean_tq = TC * TD
max_tq = Max * TD
#Max_tq = Max_tc * TD
print('Mean Topic Quality is: {}'.format(mean_tq))
print('Filtered Topic Quality is: {}'.format(max_tq))
#print('Max Max Topic Quality is: {}'.format(Max_tq))
plt.plot(range(args.num_times), topic_ch_41)
plt.xlabel('Time number')
plt.ylabel('Topic Coherence')
plt.title('Topic Coherence for Topic {}'.format(41))
plt.savefig('TC_of_41.png')
plt.show()
print('#'*100)
if args.mode == 'train':
## train model on data by looping through multiple epochs
best_epoch = 0
best_val_ppl = 1e9
all_val_ppls = []
for epoch in range(1, args.epochs):
train(epoch)
if epoch % args.visualize_every == 0:
visualize()
val_ppl = get_completion_ppl('val')
print('val_ppl: ', val_ppl)
if val_ppl < best_val_ppl:
with open(ckpt, 'wb') as f:
torch.save(model, f)
best_epoch = epoch
best_val_ppl = val_ppl
else:
## check whether to anneal lr
lr = optimizer.param_groups[0]['lr']
if args.anneal_lr and (len(all_val_ppls) > args.nonmono and val_ppl > min(all_val_ppls[:-args.nonmono]) and lr > 1e-5):
optimizer.param_groups[0]['lr'] /= args.lr_factor
all_val_ppls.append(val_ppl)
with open(ckpt, 'rb') as f:
model = torch.load(f)
model = model.to(device)
model.eval()
with torch.no_grad():
print('saving topic matrix beta...')
alpha = model.mu_q_alpha
beta = model.get_beta(alpha).cpu().numpy()
scipy.io.savemat(ckpt+'_beta.mat', {'values': beta}, do_compression=True)
if args.train_embeddings:
print('saving word embedding matrix rho...')
rho = model.rho.weight.cpu().numpy()
scipy.io.savemat(ckpt+'_rho.mat', {'values': rho}, do_compression=True)
print('computing validation perplexity...')
val_ppl = get_completion_ppl('val')
print('computing test perplexity...')
test_ppl = get_completion_ppl('test')
else:
with open(ckpt, 'rb') as f:
model = torch.load(f)
model = model.to(device)
print('saving alpha...')
with torch.no_grad():
alpha = model.mu_q_alpha.cpu().numpy()
scipy.io.savemat(ckpt+'_alpha.mat', {'values': alpha}, do_compression=True)
print('computing validation perplexity...')
val_ppl = get_completion_ppl('val')
print('computing test perplexity...')
test_ppl = get_completion_ppl('test')
print('computing topic coherence and topic diversity...')
get_topic_quality()
print('visualizing topics and embeddings...')
visualize()