-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL2RW_train.py
613 lines (564 loc) · 28.2 KB
/
L2RW_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
from sub_model import *
import os, sys
import pickle
import math
import time
sys.path.insert(0, '/home/mall/.local/lib/python2.7/site-packages/')
import numpy as np
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as Fh
import torch.optim as optim
import torch.nn.functional as F
import torch.nn.init as weight_init
import gc
import operator
import random
from sklearn.metrics import average_precision_score
import getopt
from logger import Logger
# the directory to store the tensorboard data
log = Logger('./lerw/tblog')
# check the GPU
print("Please Note That CUDA is required for the model to run")
use_cuda = torch.cuda.is_available()
print(use_cuda)
class DocumentContainer(object):
"""
the container to store the data
"""
def __init__(self, entity_pair, sentences, label, l_dist, r_dist, entity_pos):
self.entity_pair = entity_pair
self.sentences = sentences
self.label = label
self.pos = pos
self.l_dist = l_dist
self.r_dist = r_dist
self.entity_pos = entity_pos
def train_lre(train, test, dev, epochs, directory, Wv, pf1,
pf2, batch=50, num_classes=53, max_sentences=5, img_h=82, to_train=1, test_epoch=0):
"""
train: the file name of training data
test: the file name of test data
dev: the file name of dev data
epochs: the # iterations
directory: the directory to store the model
Wv: the file name of Word Vector data
batch: batch_size
num_classes: # classes of the dataset
img_h: the length of one sentence
to_train: the training flag
test_epoch: no use param
"""
# initialize the model
model = PCNN(word_length=len(Wv), feature_length=len(pf1), cnn_layers=230, kernel_size=(3,60),
Wv=Wv, pf1=pf1, pf2=pf2, num_classes=num_classes)
if torch.cuda.is_available():
model.cuda() # use CUDA
# wrap the data
[test_label, test_sents, test_pos, test_ldist, test_rdist, test_entity, test_epos] = bags_decompose(test)
[dev_label, dev_sents, dev_pos, dev_ldist, dev_rdist, dev_entity, dev_epos] = bags_decompose(dev)
[train_label, train_sents, train_pos, train_ldist, train_rdist, train_entity, train_epos] = bags_decompose(train)
optimizer = optim.SGD(model.params(), lr=0.1)
# start the training
now = time.strftime("%Y-%m-%d %H:%M:%S")
# prepare the training data
F1 = 0
for epoch in range(0,epochs):
if to_train == 1:
train_data, train_labels, train_poss, train_ldists, train_rdists, train_eposs = select_instance3(train_label, train_sents, train_pos, train_ldist, train_rdist, train_epos, img_h, num_classes, max_sentences, model, batch=2000)
print "Training:",str(now)
total_loss = 0.
now = time.strftime("%Y-%m-%d %H:%M:%S")
samples = train_data.shape[0]
batches = _make_batches(samples, batch)
index_array = np.arange(samples)
random.shuffle(index_array)
print str(now),"\tStarting Epoch",(epoch+1),"\tBatches:",len(batches)
model.train()
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
x_slice = torch.from_numpy(_slice_arrays(train_data, batch_ids)).long().cuda()
l_slice = torch.from_numpy(_slice_arrays(train_ldists, batch_ids)).long().cuda()
r_slice = torch.from_numpy(_slice_arrays(train_rdists, batch_ids)).long().cuda()
e_slice = torch.from_numpy(_slice_arrays(train_eposs, batch_ids)).long().cuda()
train_labels_slice = torch.from_numpy(_slice_arrays(train_labels, batch_ids)).long().cuda()
# put the data into variable
x_batch = autograd.Variable(x_slice, requires_grad=False)
l_batch = autograd.Variable(l_slice, requires_grad=False)
r_batch = autograd.Variable(r_slice, requires_grad=False)
e_batch = e_slice
train_labels_batch = autograd.Variable(train_labels_slice, requires_grad=False).squeeze(1)
# initialize a dummy network for the meta learning of the weights
meta_model = PCNN(word_length=len(Wv), feature_length=len(pf1), cnn_layers=230, kernel_size=(3,60),
Wv=Wv, pf1=pf1, pf2=pf2, num_classes=num_classes)
if torch.cuda.is_available():
meta_model.cuda()
meta_model.load_state_dict(model.state_dict())
# Lines 4 - 5 initial forward pass to compute the initial weighted loss
results_batch, attention_scores = meta_model(x_batch, l_batch, r_batch, e_batch)
loss = F.cross_entropy(results_batch, train_labels_batch, reduce=False)
eps = nn.Parameter(torch.zeros(loss.size()).cuda())
l_f_meta = torch.sum(loss * eps) # lf = sigma(eps*loss)
meta_model.zero_grad()
# Line 6 perform a parameter update
grads = torch.autograd.grad(l_f_meta, (meta_model.params()), create_graph=True)
meta_model.update_params(0.1, source_params=grads)
# Line 8 - 10 2nd forward pass and getting the gradients with respect to epsilon
meta_model.eval()
# prepare the dev data
dev_data, dev_labels, dev_poss, dev_ldists, dev_rdists, dev_eposs, dev_entity = select_dev3(dev_label, dev_entity,
dev_sents, dev_pos, dev_ldist, dev_rdist, dev_epos, img_h, num_classes, max_sentences, model, batch=batch)
# put the dev data into variable
x_dev = autograd.Variable(torch.from_numpy(dev_data).long().cuda(), requires_grad=False)
l_dev = autograd.Variable(torch.from_numpy(dev_ldists).long().cuda(), requires_grad=False)
r_dev = autograd.Variable(torch.from_numpy(dev_rdists).long().cuda(), requires_grad=False)
e_dev = torch.from_numpy(dev_eposs).long().cuda()
dev_labels = autograd.Variable(torch.from_numpy(dev_labels).long().cuda(), requires_grad=False).squeeze(1)
# get the result
results_dev, attention_dev = meta_model(x_dev, l_dev, r_dev, e_dev)
l_g_meta = F.cross_entropy(results_dev, dev_labels)
# calculate the gradients of eps
grad_eps = torch.autograd.grad(l_g_meta, eps, only_inputs=True, allow_unused=True)[0]
# Line 11 computing and normalizing the weights
w_tilde = torch.clamp(-grad_eps,min=0)
norm_c = torch.sum(w_tilde)
# calculate the weight
if norm_c != 0:
w = w_tilde / norm_c
else:
w = w_tilde
# Lines 12 - 14 computing for the loss with the computed weights
# and then perform a parameter update
model.train()
results_batch, attention_scores = model(x_batch, l_batch, r_batch, e_batch)
loss = F.cross_entropy(results_batch, train_labels_batch, reduce=False)
l_f = torch.sum(loss * w)
total_loss += l_f.data
# backprop
optimizer.zero_grad()
l_f.backward()
optimizer.step()
print("epoch {} batch {} training loss: {}" \
.format(epoch+1, batch_index+1, l_f.data))
#break
# validate part
now = time.strftime("%Y-%m-%d %H:%M:%S")
print str(now),"\tDone Epoch",(epoch+1),"\nLoss:",total_loss
#torch.save({'epoch': epoch ,'state_dict': model.state_dict(),'optimizer': optimizer.state_dict()}, directory+"modules/model_"+str(epoch))
# ================================================================== #
# Tensorboard Logging #
# ================================================================== #
# 1. Log scalar values (scalar summary)
info = { 'loss': total_loss.item()/samples, 'accuracy': 1.0}
for tag, value in info.items():
log.scalar_summary(tag, value, epoch+1)
# 2. Log values and gradients of the parameters (histogram summary)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
log.histo_summary(tag, value.data.cpu().numpy(), epoch+1)
log.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), epoch+1)
print("Now validation starts")
dev_data, dev_labels, dev_poss, dev_ldists, dev_rdists, dev_eposs = select_instance3(dev_label, dev_sents, dev_pos, dev_ldist, dev_rdist, dev_epos, img_h, num_classes, max_sentences, model, batch=2000)
samples = dev_data.shape[0]
batches = _make_batches(samples, batch)
index_array = np.arange(samples)
random.shuffle(index_array)
results = []
labels = []
results = np.zeros((samples, num_classes), dtype='float32')
labels = np.zeros((samples,), dtype='float32')
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
x_slice = torch.from_numpy(_slice_arrays(dev_data, batch_ids)).long().cuda()
l_slice = torch.from_numpy(_slice_arrays(dev_ldists, batch_ids)).long().cuda()
r_slice = torch.from_numpy(_slice_arrays(dev_rdists, batch_ids)).long().cuda()
e_slice = torch.from_numpy(_slice_arrays(dev_eposs, batch_ids)).long().cuda()
dev_labels_slice = torch.from_numpy(_slice_arrays(dev_labels, batch_ids)).long().cuda()
# put the data into variable
x_batch = autograd.Variable(x_slice, requires_grad=False)
l_batch = autograd.Variable(l_slice, requires_grad=False)
r_batch = autograd.Variable(r_slice, requires_grad=False)
e_batch = e_slice
dev_labels_batch = autograd.Variable(dev_labels_slice, requires_grad=False).squeeze(1)
results_batch, attention_scores = model(x_batch, l_batch, r_batch, e_batch)
results[batch_start:batch_end,:] = F.softmax(results_batch, dim=-1).data.cpu().numpy()
labels[batch_start:batch_end] = dev_labels_batch.data.cpu().numpy()
# predict the label
rel_type_arr = np.argmax(results,axis=-1) # (num_dev, )
predict_y_dist = np.asarray(np.copy(results)) # (num_dev, num_class)
# calcualate the precision and recall
dev_pr = pr(rel_type_arr, labels, dev_entity)
#accuracy(predict_y_dist, labels)
one_hot = []
results = predict_y_dist
for labels in dev_labels:
arr = np.zeros(shape=(num_classes-1,),dtype='int32')
for label in labels:
if label != 0:
arr[label-1] = 1
one_hot.append(arr)
one_hot = np.array(one_hot)
results = results[:,1:]
score = average_precision_score(one_hot, results, average='micro')
F1_temp = 2 *(dev_pr[0]*dev_pr[1])/(dev_pr[0]+dev_pr[1])
if F1_temp > F1:
F1 = F1_temp
print("saving the best model....")
torch.save({'epoch': epoch+1 ,'state_dict': model.state_dict(),'optimizer': optimizer.state_dict()}, directory+"modules/saved_model")
now = time.strftime("%Y-%m-%d %H:%M:%S")
print(str(now) + '\t epoch ' + str(epoch+1) + "\tValidate\tScore:"+str(score)+"\t Precision : "+str(dev_pr[0]) + "\t Recall: "+str(dev_pr[1])+ "\t F1score: "+ str(F1_temp) + '\n')
f_log = open(directory + 'logs/valid_log.txt', 'a+', 1)
f_log.write(str(now) + '\t epoch ' + str(epoch+1) + "\tValidate\tScore:"+str(score)+
"\t Precision : "+str(dev_pr[0]) + "\t Recall: "+str(dev_pr[1])+ "\t F1score: "+ str(F1_temp) + '\n')
f_log.close()
else:
print("Loading:","the saved model")
checkpoint = torch.load(directory+"modules/saved_model", map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("start testing")
test_data, test_labels, test_poss, test_ldists, test_rdists, test_eposs = select_instance3(test_label, test_sents, test_pos, test_ldist, test_rdist, test_epos, img_h, num_classes, max_sentences, model, batch=2000)
samples = test_data.shape[0]
batches = _make_batches(samples, batch)
index_array = np.arange(samples)
random.shuffle(index_array)
results = []
labels = []
results = np.zeros((samples, num_classes), dtype='float32')
labels = np.zeros((samples,), dtype='float32')
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
x_slice = torch.from_numpy(_slice_arrays(test_data, batch_ids)).long().cuda()
l_slice = torch.from_numpy(_slice_arrays(test_ldists, batch_ids)).long().cuda()
r_slice = torch.from_numpy(_slice_arrays(test_rdists, batch_ids)).long().cuda()
e_slice = torch.from_numpy(_slice_arrays(test_eposs, batch_ids)).long().cuda()
test_labels_slice = torch.from_numpy(_slice_arrays(test_labels, batch_ids)).long().cuda()
# put the data into variable
x_batch = autograd.Variable(x_slice, requires_grad=False)
l_batch = autograd.Variable(l_slice, requires_grad=False)
r_batch = autograd.Variable(r_slice, requires_grad=False)
e_batch = e_slice
test_labels_batch = autograd.Variable(test_labels_slice, requires_grad=False).squeeze(1)
results_batch, attention_scores = model(x_batch, l_batch, r_batch, e_batch)
results[batch_start:batch_end,:] = F.softmax(results_batch, dim=-1).data.cpu().numpy()
labels[batch_start:batch_end] = test_labels_batch.data.cpu().numpy()
# predict the label
rel_type_arr = np.argmax(results,axis=-1) # (num_test, )
predict_y_dist = np.asarray(np.copy(results)) # (num_test, num_class)
# calcualate the precision and recall
test_pr = pr(rel_type_arr, labels, test_entity)
#accuracy(predict_y_dist, test_labels)
one_hot = []
results = predict_y_dist
for labels in test_labels:
arr = np.zeros(shape=(num_classes-1,),dtype='int32')
for label in labels:
if label != 0:
arr[label-1] = 1
one_hot.append(arr)
one_hot = np.array(one_hot)
results = results[:,1:]
score = average_precision_score(one_hot, results, average='micro')
F1_temp = 2 *(test_pr[0]*test_pr[1])/(test_pr[0]+test_pr[1])
now = time.strftime("%Y-%m-%d %H:%M:%S")
print(str(now) + "\tTest\tScore:"+str(score)+"\t Precision : "+str(test_pr[0]) + "\t Recall: "+str(test_pr[1])+ "\t F1score: "+ str(F1_temp) + '\n')
f_log = open(directory + 'logs/test_log.txt', 'a+', 1)
f_log.write(str(now) + "\tTest\tScore:"+str(score)+
"\t Precision : "+str(test_pr[0]) + "\t Recall: "+str(test_pr[1])+ "\t F1score: "+ str(F1_temp) + '\n')
f_log.close()
break
def bags_decompose(data_bags):
bag_sent = [data_bag.sentences for data_bag in data_bags]
bag_label = [data_bag.label for data_bag in data_bags]
bag_pos = [data_bag.pos for data_bag in data_bags]
bag_ldist = [data_bag.l_dist for data_bag in data_bags]
bag_rdist = [data_bag.r_dist for data_bag in data_bags]
bag_entity = [data_bag.entity_pair for data_bag in data_bags]
bag_epos = [data_bag.entity_pos for data_bag in data_bags]
return [bag_label, bag_sent, bag_pos, bag_ldist, bag_rdist, bag_entity, bag_epos]
def accuracy(predict_y, true_y):
correct = 0
count = 0
for i,label in enumerate(true_y):
if len(true_y[i]) ==1 and true_y[i][0] == 0:
continue
else:
count += 1
if np.argmax(predict_y[i]) in true_y[i]:
correct += 1
print "accuracy: ",float(correct)/count, correct, count
def pr(predict_y, true_y, entity_pair):
"""
predict_y: (#instance, )
true_y: (#instance, 1)
"""
#total = np.shape(true_y)[0]
total = 0
for label in true_y:
if 0 == label:
continue
else:
total += 1
print "Total:",total # exclude the label 0
p_p = 0.0 # true postive
p_n = 0.0 # false postive
n_p = 0.0 # false negative
pr = []
prec = 0.0
rec = 0.0
p_p_final = 0.0
p_n_final = 0.0
n_p_final = 0.0
prev = -1
for real,pred in zip(true_y,predict_y):
if real == 0:
if pred == 0:
temp = 1 # true negative
else:
n_p += 1 # false positve
else:
if pred == real:
p_p += 1 # true postive
else:
p_n += 1 # false negative
try:
pr.append([(p_p)/(p_p+n_p+p_n), (p_p)/total]) # pr = [precision, recall]
except:
pr.append([1.0,(p_p)/total])
try:
prec = (p_p)/(p_p+n_p) # precision = (relevant)/total
except:
prec = 1.0
rec = (p_p)/total # recall = (relevant)/total
p_p_final = p_p
p_n_final = p_n
n_p_final = n_p
print ("p_p:",p_p_final,"n_p:",n_p_final,"p_n:",p_n_final)
return [prec,rec,total,pr]
def _make_batches(size, batch_size):
num_batches = int(np.ceil(size / float(batch_size)))
return [(i * batch_size, min(size, (i + 1) * batch_size))
for i in range(0, num_batches)]
def _slice_arrays(arrays, start=None, stop=None):
if isinstance(arrays, list):
if hasattr(start, '__len__'):
if hasattr(start, 'shape'):
start = start.tolist()
return [x[start] for x in arrays]
else:
return [x[start:stop] for x in arrays]
else:
if hasattr(start, '__len__'):
if hasattr(start, 'shape'):
start = start.tolist()
return arrays[start]
else:
return arrays[start:stop]
def get_test3(label, sents, pos, ldist, rdist, epos, img_h , numClasses, maxSentences, testModel, filterSize = 3, batch = 1000):
numBags = len(label)
predict_y = np.zeros((numBags), dtype='int32')
predict_y_prob = np.zeros((numBags), dtype='float32')
predict_y_dist = np.zeros((numBags, numClasses), dtype='float32')
# y = np.asarray(rels, dtype='int32')
numSentences = 0
for ind in range(len(sents)):
numSentences += len(sents[ind])
#print "Num Sentences:", numSentences
insX = np.zeros((numSentences, img_h), dtype='int32')
insPf1 = np.zeros((numSentences, img_h), dtype='int32')
insPf2 = np.zeros((numSentences, img_h), dtype='int32')
insPool = np.zeros((numSentences, 2), dtype='int32')
currLine = 0
for bagIndex, insRel in enumerate(label):
insNum = len(sents[bagIndex])
for m in range(insNum):
insX[currLine] = np.asarray(sents[bagIndex][m], dtype='int32').reshape((1, img_h))
insPf1[currLine] = np.asarray(ldist[bagIndex][m], dtype='int32').reshape((1, img_h))
insPf2[currLine] = np.asarray(rdist[bagIndex][m], dtype='int32').reshape((1, img_h))
epos[bagIndex][m] = sorted(epos[bagIndex][m])
if epos[bagIndex][m][0] > 79:
epos[bagIndex][m][0] = 79
if epos[bagIndex][m][1] > 79:
epos[bagIndex][m][1] = 79
if epos[bagIndex][m][0] == epos[bagIndex][m][1]:
insPool[currLine] = np.asarray([epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2) + 1], dtype='int32').reshape((1, 2))
else:
insPool[currLine] = np.asarray([epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2)], dtype='int32').reshape((1, 2))
currLine += 1
insX = np.array(insX.tolist())
insPf1 = np.array(insPf1.tolist())
insPf2 = np.array(insPf2.tolist())
insPool = np.array(insPool.tolist())
results = []
totalBatches = int(math.ceil(float(insX.shape[0])/batch))
results = np.zeros((numSentences, numClasses), dtype='float32')
#print "totalBatches:",totalBatches
samples = insX.shape[0]
batches = _make_batches(samples, batch)
index_array = np.arange(samples)
for batch_index, (batch_start, batch_end) in enumerate(batches):
# print batch_index, (batch_start, batch_end)
batch_ids = index_array[batch_start:batch_end]
x_batch = autograd.Variable(torch.from_numpy(_slice_arrays(insX, batch_ids)).long().cuda(gpu), volatile=True)
l_batch = autograd.Variable(torch.from_numpy(_slice_arrays(insPf1, batch_ids)).long().cuda(gpu), volatile=True)
r_batch = autograd.Variable(torch.from_numpy(_slice_arrays(insPf2, batch_ids)).long().cuda(gpu), volatile=True)
# e_batch = autograd.Variable(torch.from_numpy(_slice_arrays(insPool, batch_ids)).long().cuda(gpu), volatile=True)
e_batch = torch.from_numpy(_slice_arrays(insPool, batch_ids)).long().cuda(gpu)
results_batch, attention_scores = testModel(x_batch, l_batch, r_batch, e_batch)
results[batch_start:batch_end,:] = F.softmax(results_batch, dim=-1).data.cpu().numpy()
# print results
rel_type_arr = np.argmax(results,axis=-1)
max_prob = np.amax(results, axis=-1)
currLine = 0
for bagIndex, insRel in enumerate(label):
insNum = len(sents[bagIndex])
maxP = -1
pred_rel_type = 0
max_pos_p = -1
positive_flag = False
max_vec = []
for m in range(insNum):
rel_type = rel_type_arr[currLine] # the type of this line
if positive_flag and rel_type == 0:
currLine += 1
continue
else:
# at least one instance is positive
tmpMax = max_prob[currLine] # the max predicted prob of this sentence
if rel_type > 0:
positive_flag = True
if tmpMax > max_pos_p:
max_pos_p = tmpMax
pred_rel_type = rel_type
max_vec = np.copy(results[currLine]) # the result prob distribution
else:
if tmpMax > maxP:
maxP = tmpMax
max_vec = np.copy(results[currLine])
currLine += 1
if positive_flag:
predict_y_prob[bagIndex] = max_pos_p
else:
predict_y_prob[bagIndex] = maxP
predict_y_dist[bagIndex] = np.asarray(np.copy(max_vec), dtype='float32').reshape((1,numClasses))
predict_y[bagIndex] = pred_rel_type
return [predict_y, predict_y_prob, label, predict_y_dist]
def select_instance3(label, sents, pos, ldist, rdist, epos, img_h, numClasses, maxSentences, testModel, filterSize = 3,batch=1000):
"""
preprocess the data: take every sentence as an example
"""
numBags = len(label)
bagIndexX = 0
totalSents = 0
for bagIndex, insNum in enumerate(sents):
totalSents += len(insNum)
x = np.zeros((totalSents, img_h), dtype='int32')
p = np.zeros((totalSents, img_h), dtype='int32')
l = np.zeros((totalSents, img_h), dtype='int32')
r = np.zeros((totalSents, img_h), dtype='int32')
e = np.zeros((totalSents, 2), dtype='int32')
lab = np.zeros((totalSents, 1), dtype='int32')
curr = 0
for bagIndex, insNum in enumerate(sents):
if len(insNum) > 0:
for m in range(len(insNum)):
x[curr,:] = sents[bagIndex][m]
l[curr,:] = ldist[bagIndex][m]
r[curr,:] = rdist[bagIndex][m]
lab[curr, :] = [label[bagIndex][0]]
epos[bagIndex][m] = sorted(epos[bagIndex][m])
if epos[bagIndex][m][0] > 79:
epos[bagIndex][m][0] = 79
if epos[bagIndex][m][1] > 79:
epos[bagIndex][m][1] = 79
if epos[bagIndex][m][0] == epos[bagIndex][m][1]:
e[curr,:] = [epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2) + 1]
else:
e[curr,:] = [epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2)]
curr += 1
x = np.array(x.tolist())
l = np.array(l.tolist())
r = np.array(r.tolist())
e = np.array(e.tolist())
return [x, lab, p, l, r, e]
def select_dev3(label, entity, sents, pos, ldist, rdist, epos, img_h, numClasses, maxSentences, testModel, filterSize = 3,batch=1000):
"""
preprocess the data: take every sentence as an example
"""
numBags = len(label)
bagIndexX = 0
totalSents = 0
for bagIndex, insNum in enumerate(sents):
totalSents += len(insNum)
x = np.zeros((totalSents, img_h), dtype='int32')
p = np.zeros((totalSents, img_h), dtype='int32')
l = np.zeros((totalSents, img_h), dtype='int32')
r = np.zeros((totalSents, img_h), dtype='int32')
e = np.zeros((totalSents, 2), dtype='int32')
lab = np.zeros((totalSents, 1), dtype='int32')
dev_entity = []
curr = 0
for bagIndex, insNum in enumerate(sents):
if len(insNum) > 0:
for m in range(len(insNum)):
x[curr,:] = sents[bagIndex][m]
l[curr,:] = ldist[bagIndex][m]
r[curr,:] = rdist[bagIndex][m]
lab[curr, :] = [label[bagIndex][0]]
dev_entity.append(entity[bagIndex])
epos[bagIndex][m] = sorted(epos[bagIndex][m])
if epos[bagIndex][m][0] > 79:
epos[bagIndex][m][0] = 79
if epos[bagIndex][m][1] > 79:
epos[bagIndex][m][1] = 79
if epos[bagIndex][m][0] == epos[bagIndex][m][1]:
e[curr,:] = [epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2) + 1]
else:
e[curr,:] = [epos[bagIndex][m][0]+int(filterSize/2), epos[bagIndex][m][1]+ int(filterSize/2)]
curr += 1
sample_index = np.random.randint(0, totalSents, batch)
x = np.array(x.tolist())[sample_index]
l = np.array(l.tolist())[sample_index]
r = np.array(r.tolist())[sample_index]
e = np.array(e.tolist())[sample_index]
lab = np.array(lab.tolist())[sample_index]
return [x, lab, p, l, r, e, dev_entity]
if __name__ == "__main__":
if len(sys.argv) < 6:
print "Please enter the arguments correctly!"
print(len(sys.argv))
sys.exit()
inputdir = sys.argv[1] + "/"
resultdir = inputdir
resultdir = "lerw/"
print 'result dir='+resultdir
if not os.path.exists(resultdir):
os.mkdir(resultdir)
dataType = "_features_all_6Months"
test = pickle.load(open(inputdir+sys.argv[3]))
train = pickle.load(open(inputdir+sys.argv[2]))
dev = pickle.load(open(inputdir+sys.argv[4]))
print 'load Wv ...'
Wv = np.array(pickle.load(open(inputdir+sys.argv[5])))
# Wv = np.random.random((10,50))
# Wv[0] = Wv[0]*0
#print(Wv[0])
# rng = np.random.RandomState(3435)
PF1 = np.asarray(np.random.uniform(low=-1, high=1, size=[101, 5]), dtype='float32')
padPF1 = np.zeros((1, 5))
PF1 = np.vstack((padPF1, PF1))
PF2 = np.asarray(np.random.uniform(low=-1, high=1, size=[101, 5]), dtype='float32')
padPF2 = np.zeros((1, 5))
PF2 = np.vstack((padPF2, PF2))
#print PF1[0]
#print PF2[0]
train_lre(train,
test,
dev,
50,
resultdir,
Wv,
PF1,
PF2,batch=50, test_epoch=0, to_train=0, num_classes=5)