-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVisualizations.R
173 lines (154 loc) · 7.3 KB
/
Visualizations.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
setwd("C:\\Users") # set working dir
final <- read.csv("Final.csv") # data set containing only the import-adjusted FD components for V4 countries and the Baltics
################################################################
## Required libraries
library(tidyverse)
library(gridExtra)
library(zoo)
################################################################library(zoo)
## pivoting the csv. data
final_pivoted <- pivot_longer(final,
cols = GrowthRate_C:GrowthRate_EX,
names_to = "Categories",
values_to = "Value")
## renaming the import-adjusted growth categories
final_pivoted <- final_pivoted %>%
mutate(Categories = case_when(
Categories == "GrowthRate_C" ~ "Import-adjusted Private Consumption",
Categories == "GrowthRate_I" ~ "Import-adjusted Investment",
Categories == "GrowthRate_G" ~ "Import-adjusted Government Consumption",
Categories == "GrowthRate_EX" ~ "Import-adjusted Exports",
TRUE ~ Categories
))
## Subsetting countries into separate dfs
## Computing 3-year moving averages
Czechia <- final_pivoted %>%
filter(Country == "Czechia") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Hungary <- final_pivoted %>%
filter(Country == "Hungary") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Poland <- final_pivoted %>%
filter(Country == "Poland") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Slovakia <- final_pivoted %>%
filter(Country == "Slovakia") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Estonia <- final_pivoted %>%
filter(Country == "Estonia") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Latvia <- final_pivoted %>%
filter(Country == "Latvia") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
Lithuania <- final_pivoted %>%
filter(Country == "Lithuania") %>%
mutate(moving_avg = ave(Value, Categories, FUN = function(x) rollmean(x, k = 3, align = "right", fill = NA)))
## Plotting the moving-averages using stacked barplot
CZ <- ggplot(Czechia, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Czechia", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
)) +
guides(fill = guide_legend(title = NULL))
HU <- ggplot(Hungary, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Hungary", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
PL <- ggplot(Poland, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Poland", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
SK <- ggplot(Slovakia, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Slovakia", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
EE <- ggplot(Estonia, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Estonia", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
LV <- ggplot(Latvia, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Latvia", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
LT <- ggplot(Lithuania, aes(fill = Categories, y = moving_avg, x = Year))+
geom_bar(position = "stack", stat = "identity") +
labs(title = "Lithuania", x = "", y = "Growth Contribution in %") +
theme_light() +
theme(panel.grid = element_blank(),
panel.border = element_blank(),
axis.line = element_line(color = "black"))+
scale_fill_manual(
name = "Categories",
values = c("Import-adjusted Private Consumption" = "lightblue",
"Import-adjusted Investment" = "darkolivegreen2",
"Import-adjusted Government Consumption" = "coral",
"Import-adjusted Exports" = "darkgoldenrod1"
))+
guides(fill = guide_legend(title = NULL))
## Putting all together
grid.arrange(CZ, HU, PL, SK, nrow = 2, ncol = 2)
grid.arrange(EE, LV, LT, nrow = 2, ncol = 2)