diff --git a/README.md b/README.md index 72cc8ac..dd90ac8 100644 --- a/README.md +++ b/README.md @@ -135,76 +135,96 @@ vals = rand((A(), B(), C(), D(), E(), F()), 1000); tuple_manytypes = Tuple(vals); vec_manytypes = collect(Union{A, B, C, D, E, F}, vals); +iter_manytypes = (x for x in vec_manytypes); tuple_sumtype = Tuple(S.(vals)); vec_sumtype = S.(vals); +iter_sumtype = (x for x in vec_sumtype) @benchmark sum($f, $tuple_manytypes) @benchmark sum($f, $tuple_sumtype) @benchmark sum($f, $vec_manytypes) @benchmark sum($f, $vec_sumtype) +@benchmark sum($f, $iter_manytypes) +@benchmark sum($f, $iter_sumtype) ``` ```julia julia> @benchmark sum($f, $tuple_manytypes) BenchmarkTools.Trial: 10000 samples with 1 evaluation. - Range (min … max): 75.092 μs … 1.176 ms ┊ GC (min … max): 0.00% … 91.00% - Time (median): 77.736 μs ┊ GC (median): 0.00% - Time (mean ± σ): 78.613 μs ± 16.373 μs ┊ GC (mean ± σ): 0.34% ± 1.67% + Range (min … max): 81.092 μs … 1.267 ms ┊ GC (min … max): 0.00% … 90.49% + Time (median): 85.791 μs ┊ GC (median): 0.00% + Time (mean ± σ): 87.779 μs ± 18.802 μs ┊ GC (mean ± σ): 0.35% ± 1.67% - ▅█▇▆▁ - ▂▂▁▂▂▂▂▂▂▂▂▃▄██████▆▃▂▂▂▂▂▂▂▂▃▃▄▄▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃ - 75.1 μs Histogram: frequency by time 84.3 μs < + ▂ ▃▇█▆▆▅▃▂▂▂▁▁ ▂ + █████████████████▇▇▇▅▆▅▄▅▅▅▄▄▄▄▄▄▅▄▄▄▄▄▄▄▃▄▅▅▄▃▅▄▅▅▅▄▅▅▄▅▅▅ █ + 81.1 μs Histogram: log(frequency) by time 130 μs < - Memory estimate: 13.34 KiB, allocs estimate: 854. + Memory estimate: 13.42 KiB, allocs estimate: 859. julia> @benchmark sum($f, $tuple_sumtype) -BenchmarkTools.Trial: 10000 samples with 116 evaluations. - Range (min … max): 758.672 ns … 990.836 ns ┊ GC (min … max): 0.00% … 0.00% - Time (median): 767.828 ns ┊ GC (median): 0.00% - Time (mean ± σ): 772.407 ns ± 13.168 ns ┊ GC (mean ± σ): 0.00% ± 0.00% +BenchmarkTools.Trial: 10000 samples with 107 evaluations. + Range (min … max): 770.514 ns … 4.624 μs ┊ GC (min … max): 0.00% … 0.00% + Time (median): 823.514 ns ┊ GC (median): 0.00% + Time (mean ± σ): 826.188 ns ± 42.968 ns ┊ GC (mean ± σ): 0.00% ± 0.00% - ▄ █ █ ▆ ▄ ▄ ▄▂ ▆ ▁ ▂ - █▄▁▁█▇██▇█▇▆▇▇█▃▅▅▄▅▆▇▄▇██▇▆▇██▆▆▇██▆▆▆█▄▄▅▄█▄▄▁▁▄▄▁▃▁▃▆▆▁▄▆▅ █ - 759 ns Histogram: log(frequency) by time 817 ns < + █ ▁ ▂ ▂ + ▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▇▂█▃██▃█▅█▄▂██▂█▅▃▃▂▂▃▂▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃ + 771 ns Histogram: frequency by time 900 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $vec_manytypes) -BenchmarkTools.Trial: 10000 samples with 211 evaluations. - Range (min … max): 355.455 ns … 504.645 ns ┊ GC (min … max): 0.00% … 0.00% - Time (median): 360.536 ns ┊ GC (median): 0.00% - Time (mean ± σ): 362.472 ns ± 6.510 ns ┊ GC (mean ± σ): 0.00% ± 0.00% +BenchmarkTools.Trial: 10000 samples with 207 evaluations. + Range (min … max): 367.164 ns … 566.816 ns ┊ GC (min … max): 0.00% … 0.00% + Time (median): 389.280 ns ┊ GC (median): 0.00% + Time (mean ± σ): 390.919 ns ± 9.984 ns ┊ GC (mean ± σ): 0.00% ± 0.00% - ▁█ - ▂▅▆▂▂▃▇▆▂▃██▇▂▂▃▅▃▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▃▄▃▂▂▂▂▂▂▂▂▁▁▁▁▂▂▂▂▂▂ ▃ - 355 ns Histogram: frequency by time 383 ns < + ▁ ▇▁ ▃ ▁ █ ▂ + ▂▂▃▂▁▁▂▁▁▂▂▁▂▂▄█▃██▃█▃▄█▂█▇▃█▅▃█▃▃▃▂▃▂▂▃▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃ + 367 ns Histogram: frequency by time 424 ns < Memory estimate: 0 bytes, allocs estimate: 0. julia> @benchmark sum($f, $vec_sumtype) -BenchmarkTools.Trial: 10000 samples with 276 evaluations. - Range (min … max): 286.880 ns … 372.297 ns ┊ GC (min … max): 0.00% … 0.00% - Time (median): 291.453 ns ┊ GC (median): 0.00% - Time (mean ± σ): 292.996 ns ± 4.673 ns ┊ GC (mean ± σ): 0.00% ± 0.00% +BenchmarkTools.Trial: 10000 samples with 254 evaluations. + Range (min … max): 297.016 ns … 464.575 ns ┊ GC (min … max): 0.00% … 0.00% + Time (median): 308.811 ns ┊ GC (median): 0.00% + Time (mean ± σ): 306.702 ns ± 7.518 ns ┊ GC (mean ± σ): 0.00% ± 0.00% - ▁█ ▅▇ █▄ - ▂▃▅▄▂▃██▅▃▃██▄▃▅██▃▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▃▃▂▂▃▄▆▅▃▂▂▂▂▂▂▁▂▂▂▂▁▂▂▁▂▂ ▃ - 287 ns Histogram: frequency by time 309 ns < + ▁ ▆█▅ ▅█▆▁▁▅▄ ▂▂ ▁ ▁▄▄▁ ▂▁ ▂ + ▇██████▇▅▅▄▅▅▄▄▄▃▄▄▅▅▅▆████████▇▆██▆▅▇██▅███████▇██▇▃▄▅▆▅▅▄▃▅ █ + 297 ns Histogram: log(frequency) by time 326 ns < Memory estimate: 0 bytes, allocs estimate: 0. -``` -*These benchmarks have been run on Julia 1.11* +julia> @benchmark sum($f, $iter_manytypes) +BenchmarkTools.Trial: 10000 samples with 10 evaluations. + Range (min … max): 1.323 μs … 3.407 μs ┊ GC (min … max): 0.00% … 0.00% + Time (median): 1.390 μs ┊ GC (median): 0.00% + Time (mean ± σ): 1.389 μs ± 54.987 ns ┊ GC (mean ± σ): 0.00% ± 0.00% + + ▅▄▁▂ ▃█▇▇ + ▃▄▆████▅▄▇████▆▇▆▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▂▁▂▂▂▂▁▁▂▂▁▂▂▂▂▂▂▂▂▂ ▃ + 1.32 μs Histogram: frequency by time 1.67 μs < + + Memory estimate: 0 bytes, allocs estimate: 0. ------- +julia> @benchmark sum($f, $iter_sumtype) +BenchmarkTools.Trial: 10000 samples with 258 evaluations. + Range (min … max): 310.236 ns … 370.112 ns ┊ GC (min … max): 0.00% … 0.00% + Time (median): 318.971 ns ┊ GC (median): 0.00% + Time (mean ± σ): 319.347 ns ± 5.859 ns ┊ GC (mean ± σ): 0.00% ± 0.00% -See the [Discourse announcement post](https://discourse.julialang.org/t/ann-dynamicsumtypes-jl-v3/116741) -for more information about the performance advantages of the approach in respect to a `Union`. In summary, -it is shown that for Julia<1.11, `@sumtype` has a huge performance advantage in realistic programs (often -around 10x), while for Julia>=1.11, given the improvements in dynamic dispatch issues related to a `Union`, -the advantage of `@sumtype` is much less, around 1.5-2x faster. + ▁ ▄▇▆▁▃▆█▃ ▃▆▅ ▄▆▄ ▃▆▇▃▁▄▇▇▃▁▂▅▄▁ ▁▂▁ ▁ ▁▁ ▁ ▃ + ▅█▂▆████████▇███▅███████████████████▇██████████████████▇▅█▆▇▅ █ + 310 ns Histogram: log(frequency) by time 338 ns < + + Memory estimate: 0 bytes, allocs estimate: 0. +``` + +*These benchmarks have been run on Julia 1.11* ## Contributing