diff --git a/README.md b/README.md
index 72cc8ac..dd90ac8 100644
--- a/README.md
+++ b/README.md
@@ -135,76 +135,96 @@ vals = rand((A(), B(), C(), D(), E(), F()), 1000);
tuple_manytypes = Tuple(vals);
vec_manytypes = collect(Union{A, B, C, D, E, F}, vals);
+iter_manytypes = (x for x in vec_manytypes);
tuple_sumtype = Tuple(S.(vals));
vec_sumtype = S.(vals);
+iter_sumtype = (x for x in vec_sumtype)
@benchmark sum($f, $tuple_manytypes)
@benchmark sum($f, $tuple_sumtype)
@benchmark sum($f, $vec_manytypes)
@benchmark sum($f, $vec_sumtype)
+@benchmark sum($f, $iter_manytypes)
+@benchmark sum($f, $iter_sumtype)
```
```julia
julia> @benchmark sum($f, $tuple_manytypes)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
- Range (min … max): 75.092 μs … 1.176 ms ┊ GC (min … max): 0.00% … 91.00%
- Time (median): 77.736 μs ┊ GC (median): 0.00%
- Time (mean ± σ): 78.613 μs ± 16.373 μs ┊ GC (mean ± σ): 0.34% ± 1.67%
+ Range (min … max): 81.092 μs … 1.267 ms ┊ GC (min … max): 0.00% … 90.49%
+ Time (median): 85.791 μs ┊ GC (median): 0.00%
+ Time (mean ± σ): 87.779 μs ± 18.802 μs ┊ GC (mean ± σ): 0.35% ± 1.67%
- ▅█▇▆▁
- ▂▂▁▂▂▂▂▂▂▂▂▃▄██████▆▃▂▂▂▂▂▂▂▂▃▃▄▄▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
- 75.1 μs Histogram: frequency by time 84.3 μs <
+ ▂ ▃▇█▆▆▅▃▂▂▂▁▁ ▂
+ █████████████████▇▇▇▅▆▅▄▅▅▅▄▄▄▄▄▄▅▄▄▄▄▄▄▄▃▄▅▅▄▃▅▄▅▅▅▄▅▅▄▅▅▅ █
+ 81.1 μs Histogram: log(frequency) by time 130 μs <
- Memory estimate: 13.34 KiB, allocs estimate: 854.
+ Memory estimate: 13.42 KiB, allocs estimate: 859.
julia> @benchmark sum($f, $tuple_sumtype)
-BenchmarkTools.Trial: 10000 samples with 116 evaluations.
- Range (min … max): 758.672 ns … 990.836 ns ┊ GC (min … max): 0.00% … 0.00%
- Time (median): 767.828 ns ┊ GC (median): 0.00%
- Time (mean ± σ): 772.407 ns ± 13.168 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
+BenchmarkTools.Trial: 10000 samples with 107 evaluations.
+ Range (min … max): 770.514 ns … 4.624 μs ┊ GC (min … max): 0.00% … 0.00%
+ Time (median): 823.514 ns ┊ GC (median): 0.00%
+ Time (mean ± σ): 826.188 ns ± 42.968 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
- ▄ █ █ ▆ ▄ ▄ ▄▂ ▆ ▁ ▂
- █▄▁▁█▇██▇█▇▆▇▇█▃▅▅▄▅▆▇▄▇██▇▆▇██▆▆▇██▆▆▆█▄▄▅▄█▄▄▁▁▄▄▁▃▁▃▆▆▁▄▆▅ █
- 759 ns Histogram: log(frequency) by time 817 ns <
+ █ ▁ ▂ ▂
+ ▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▇▂█▃██▃█▅█▄▂██▂█▅▃▃▂▂▃▂▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
+ 771 ns Histogram: frequency by time 900 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark sum($f, $vec_manytypes)
-BenchmarkTools.Trial: 10000 samples with 211 evaluations.
- Range (min … max): 355.455 ns … 504.645 ns ┊ GC (min … max): 0.00% … 0.00%
- Time (median): 360.536 ns ┊ GC (median): 0.00%
- Time (mean ± σ): 362.472 ns ± 6.510 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
+BenchmarkTools.Trial: 10000 samples with 207 evaluations.
+ Range (min … max): 367.164 ns … 566.816 ns ┊ GC (min … max): 0.00% … 0.00%
+ Time (median): 389.280 ns ┊ GC (median): 0.00%
+ Time (mean ± σ): 390.919 ns ± 9.984 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
- ▁█
- ▂▅▆▂▂▃▇▆▂▃██▇▂▂▃▅▃▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▃▄▃▂▂▂▂▂▂▂▂▁▁▁▁▂▂▂▂▂▂ ▃
- 355 ns Histogram: frequency by time 383 ns <
+ ▁ ▇▁ ▃ ▁ █ ▂
+ ▂▂▃▂▁▁▂▁▁▂▂▁▂▂▄█▃██▃█▃▄█▂█▇▃█▅▃█▃▃▃▂▃▂▂▃▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
+ 367 ns Histogram: frequency by time 424 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark sum($f, $vec_sumtype)
-BenchmarkTools.Trial: 10000 samples with 276 evaluations.
- Range (min … max): 286.880 ns … 372.297 ns ┊ GC (min … max): 0.00% … 0.00%
- Time (median): 291.453 ns ┊ GC (median): 0.00%
- Time (mean ± σ): 292.996 ns ± 4.673 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
+BenchmarkTools.Trial: 10000 samples with 254 evaluations.
+ Range (min … max): 297.016 ns … 464.575 ns ┊ GC (min … max): 0.00% … 0.00%
+ Time (median): 308.811 ns ┊ GC (median): 0.00%
+ Time (mean ± σ): 306.702 ns ± 7.518 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
- ▁█ ▅▇ █▄
- ▂▃▅▄▂▃██▅▃▃██▄▃▅██▃▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▃▃▂▂▃▄▆▅▃▂▂▂▂▂▂▁▂▂▂▂▁▂▂▁▂▂ ▃
- 287 ns Histogram: frequency by time 309 ns <
+ ▁ ▆█▅ ▅█▆▁▁▅▄ ▂▂ ▁ ▁▄▄▁ ▂▁ ▂
+ ▇██████▇▅▅▄▅▅▄▄▄▃▄▄▅▅▅▆████████▇▆██▆▅▇██▅███████▇██▇▃▄▅▆▅▅▄▃▅ █
+ 297 ns Histogram: log(frequency) by time 326 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
-```
-*These benchmarks have been run on Julia 1.11*
+julia> @benchmark sum($f, $iter_manytypes)
+BenchmarkTools.Trial: 10000 samples with 10 evaluations.
+ Range (min … max): 1.323 μs … 3.407 μs ┊ GC (min … max): 0.00% … 0.00%
+ Time (median): 1.390 μs ┊ GC (median): 0.00%
+ Time (mean ± σ): 1.389 μs ± 54.987 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
+
+ ▅▄▁▂ ▃█▇▇
+ ▃▄▆████▅▄▇████▆▇▆▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▂▁▂▂▂▂▁▁▂▂▁▂▂▂▂▂▂▂▂▂ ▃
+ 1.32 μs Histogram: frequency by time 1.67 μs <
+
+ Memory estimate: 0 bytes, allocs estimate: 0.
-------
+julia> @benchmark sum($f, $iter_sumtype)
+BenchmarkTools.Trial: 10000 samples with 258 evaluations.
+ Range (min … max): 310.236 ns … 370.112 ns ┊ GC (min … max): 0.00% … 0.00%
+ Time (median): 318.971 ns ┊ GC (median): 0.00%
+ Time (mean ± σ): 319.347 ns ± 5.859 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
-See the [Discourse announcement post](https://discourse.julialang.org/t/ann-dynamicsumtypes-jl-v3/116741)
-for more information about the performance advantages of the approach in respect to a `Union`. In summary,
-it is shown that for Julia<1.11, `@sumtype` has a huge performance advantage in realistic programs (often
-around 10x), while for Julia>=1.11, given the improvements in dynamic dispatch issues related to a `Union`,
-the advantage of `@sumtype` is much less, around 1.5-2x faster.
+ ▁ ▄▇▆▁▃▆█▃ ▃▆▅ ▄▆▄ ▃▆▇▃▁▄▇▇▃▁▂▅▄▁ ▁▂▁ ▁ ▁▁ ▁ ▃
+ ▅█▂▆████████▇███▅███████████████████▇██████████████████▇▅█▆▇▅ █
+ 310 ns Histogram: log(frequency) by time 338 ns <
+
+ Memory estimate: 0 bytes, allocs estimate: 0.
+```
+
+*These benchmarks have been run on Julia 1.11*
## Contributing