forked from graphdeco-inria/gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
107 lines (87 loc) · 3.82 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import warnings ; warnings.filterwarnings(action='ignore', category=UserWarning)
import json
from pathlib import Path
from argparse import ArgumentParser
from traceback import print_exc
from typing import List, Tuple
import torch
from torch import Tensor
import torchvision.transforms.functional as TF
from PIL import Image
from tqdm import tqdm
from modules.lpipsPyTorch import LPIPS
from modules.utils.loss_utils import psnr, ssim
torch.cuda.set_device(torch.device('cuda:0'))
mean = lambda x: sum(x) / len(x) if len(x) else float('nan')
pil_to_tensor = lambda x: TF.to_tensor(x)[:3, :, :].unsqueeze(0).cuda()
def read_images(renders_dir:Path, gt_dir:Path) -> Tuple[List[Tensor], List[Tensor], List[str]]:
renders = []
gts = []
names = []
for fp in renders_dir.iterdir():
if fp.is_dir(): continue
fn = fp.name
renders.append(pil_to_tensor(Image.open(renders_dir / fn)))
gts.append(pil_to_tensor(Image.open(gt_dir / fn)))
names.append(fn)
return renders, gts, names
def evaluate(model_paths:List[Path], split:str='test'):
lpips = LPIPS(net_type='vgg').cuda()
for scene_dir in model_paths:
try:
print(f'Scene: {scene_dir} [{split}]')
results_agg = {}
results_per_view = {}
test_dir = scene_dir / split
for method_dir in test_dir.iterdir():
method = method_dir.name
print(f'Method: {method}')
results_agg [method] = {}
results_per_view[method] = {}
renders_dir = method_dir / 'renders'
gt_dir = method_dir / 'gt'
renders, gts, image_names = read_images(renders_dir, gt_dir)
ssims = []
psnrs = []
lpipss = []
for idx in tqdm(range(len(renders)), desc='Metric evaluation progress'):
ssims. append(ssim (renders[idx], gts[idx]).item())
psnrs. append(psnr (renders[idx], gts[idx]).item())
lpipss.append(lpips(renders[idx], gts[idx]).item())
print(' SSIM: {:>12.7f}' .format(mean(ssims), '.5'))
print(' PSNR: {:>12.7f}' .format(mean(psnrs), '.5'))
print(' LPIPS: {:>12.7f}'.format(mean(lpipss), '.5'))
print()
results_agg[method] = {
'SSIM': mean(ssims),
'PSNR': mean(psnrs),
'LPIPS': mean(lpipss),
}
results_per_view[method] = {
'SSIM': {name: ssim for ssim, name in zip(ssims, image_names)},
'PSNR': {name: psnr for psnr, name in zip(psnrs, image_names)},
'LPIPS': {name: lp for lp, name in zip(lpipss, image_names)},
}
with open(scene_dir/ 'results.json', 'w', encoding='utf-8') as fp:
json.dump(results_agg, fp, indent=2, ensure_ascii=False)
with open(scene_dir / 'results_per_view.json', 'w', encoding='utf-8') as fp:
json.dump(results_per_view, fp, indent=2, ensure_ascii=False)
except:
print_exc()
print('Unable to compute metrics for model:', scene_dir)
if __name__ == '__main__':
parser = ArgumentParser(description='Evaluating script parameters')
parser.add_argument('--model_paths', '-m', required=True, nargs='+', type=Path, default=[])
args = parser.parse_args()
evaluate(args.model_paths, 'train')
evaluate(args.model_paths, 'test' )