-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlibLSA.py
258 lines (230 loc) · 9.04 KB
/
libLSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python
import os
import sys
import numpy
import math
from sklearn.decomposition import ProjectedGradientNMF
# Keith Murray
'''
'''
class termDocMatrix(object):
def __init__(self, saveVerbose=True, wcThreshold=2, parseOn=" "):
# Get term-document matrix
# transormation/modified weighting of term-doc matrix
# dimensionality reduction
# clustering of documents in reduced space
self.wcThreshold = wcThreshold
self.saveVerbose = saveVerbose
self.parseOn = parseOn
self.mD = {}
self.tdm = []
self.tdmraw = []
self.termraw = []
self.docs = []
self.docsSize = []
self.terms = []
self.docCount = 0
self.idfweight = False
self.P = []
self.Q = []
self.er = []
self.idfs = []
return
def add(self, newThing, docs=""):
def _mergeDict(self, newD, docs=""):
# Grab doc count so far
docIndex = self.docCount
# Get the correct title
if docs == "":
docs = docIndex
self.docs.append(docs)
# Add doc size (useful with tdmraw)
tdWeight = float(sum(newD.values()))
if tdWeight == 0:
tdWeight = 1.
self.docsSize.append(tdWeight)
# Add newD to mD
for key in newD:
if key in self.mD:
if len(self.mD[key]) < self.docCount:
for i in range(len(self.mD[key]), self.docCount):
self.mD[key].append(0.)
self.mD[key].append(newD[key]/float(tdWeight))
else:
if self.docCount > 0:
self.mD[key] = [0.]
for i in range(1, self.docCount):
self.mD[key].append(0.)
self.mD[key].append(newD[key]/float(tdWeight))
else:
self.mD[key] = [newD[key]/float(tdWeight)]
self.docCount += 1
return
# Ok what was I just given?
if type(newThing) == list:
# Shit.. Ok we can handle this, a list of what?
if len(newThing) > 0:
if type(newThing[0]) == dict:
# Sweet, it's some dicts, merge them!
# Wait, what about the title var?
if (docs != "") and (type(docs) == list) and (len(docs) == len(newThing)):
for i in range(len(newThing)):
_mergeDict(self, newThing[i], docs[i])
else:
for i in range(len(newThing)):
_mergeDict(self, newThing[i])
elif type(newThing[0]) in [float, long, int, str]:
# Well, I mean I don't see why numbers can't be LSA'ized
# Convert list to dict, then merge
newD = {}
for i in range(len(newThing)):
if newThing[i] in newD:
newD[newThing[i]] += 1
else:
newD[newThing[i]] = 1
_mergeDict(self, newD, docs)
else:
raise(TypeError, "Elements of list are not valid inputs")
elif type(newThing) == dict:
# Woo this is simple!
_mergeDict(self, newThing, docs)
elif type(newThing) == str:
# I'm assuming I'm to add this string to the term doc Matrix
strList = newThing.split(self.parseOn)
newD = {}
for i in range(len(strList)):
if strList[i].strip() in newD:
newD[strList[i].strip()] += 1
else:
newD[strList[i].strip()] = 1
_mergeDict(self, newD, docs)
return
def weight_idf(self):
# Now we're weighting it, booyea
# The weighting applied here is idf, and assumes td weighting was applied earlier
# idf: inverse document frequency: log(N/ni)
# if every doc has word ni, the it zeros out the row
# Rather than math it, check for it first
self.idfweight = True
for key in self.mD:
# Saving raw state allows matrix to grow w/o redoing everything
# only done if
if self.saveVerbose == True:
self.termraw.append(key)
# This chunk is to check for the idf weight condition:
# if every doc has the term, then it's not worth 'mathing'
# and instead can be eliminated
idf = False
if len(self.mD[key]) < self.docCount:
idf = True
for i in range(len(self.mD[key]), self.docCount):
self.mD[key].append(0.)
# Saving raw matrix
if self.saveVerbose == True:
self.tdmraw.append(self.mD[key])
# Scan row for a zero
if idf == False:
for i in range(len(self.mD[key])):
if self.mD[key][i] == 0:
idf = True
break
# CURRENTLY AN ERROR DUE TO TD WEIGHTING EARLIER
if (len(filter(None, self.mD[key])) >= self.wcThreshold) and idf == True:
self.terms.append(key)
self.tdm.append(self.mD[key])
# Ok now it's actually time to start weighting
self.tdm = numpy.array(self.tdm)
#print len(self.tdm)
for i in range(len(self.tdm)):
#print self.terms[i]
ni = float(numpy.count_nonzero(self.tdm[i]))
if ni == 0:
raise ValueError("ARG HOW ARE THERE NO NON ZERO ELIMENTS")
#print ni, self.docCount
idfValue = math.log(self.docCount/ni)
self.tdm[i] = self.tdm[i] * idfValue
self.idfs.append(idfValue)
return
def svd(self):
return
def nmf(self, k):
nmf = ProjectedGradientNMF(n_components=k, max_iter=200)
P = nmf.fit_transform(self.tdm)
Q = nmf.components_.T
self.P = P
self.Q = Q
self.er = nmf.reconstruction_err_
#print "\tError: ", self.er
return P, Q
def saveParts(self, location=""):
# Check Location
if location != "":
if location[-1] != "/":
location = str(location) + "/"
if not os.path.exists(location): os.makedirs(location)
# Save Terms
termSet = open(str(location) + "terms.lst", 'w')
for i in range(len(self.terms)):
termSet.write(str(self.terms[i]) +"\n")
termSet.close()
# Save Docs
docSet = open(str(location) + "docs.lsd", 'w')
for i in range(len(self.docs)):
docSet.write(str(self.docs[i]) +"\n")
docSet.close()
# Save Raw TD Matrix
if self.saveVerbose == True:
tdmR = open(str(location) + "tdmRaw.lsm", 'w')
for i in range(len(self.tdmraw)):
for j in range(len(self.tdmraw[i])):
tdmR.write(str(self.tdmraw[i][j]) + "\t")
tdmR.write("\n")
tdmR.close()
# Save P Matrix
p = open(str(location) + "Pmatrix.lsp", 'w')
for i in range(len(self.P)):
for j in range(len(self.P[i])):
p.write(str(self.P[i][j]) + "\t")
p.write("\n")
p.close()
# Save Q Matrix
q = open(str(location) + "Qmatrix.lsq", 'w')
for i in range(len(self.Q)):
for j in range(len(self.Q[i])):
q.write(str(self.Q[i][j]) + "\t")
q.write("\n")
q.close()
# Save idf Weights
idfs = open(str(location) + "idf.lsi", 'w')
for i in range(len(self.idfs)):
idfs.write(str(self.idfs[i]) + "\n")
idfs.close()
return
def __repr__(self):
# This will be redone,
# __repr__ does not need to print the td matrix
if self.idfweight == False:
a = "\t"
for i in range(len(self.docs)):
a = a +'"'+ str(self.docs[i]) +'"'+ "\t"
a = a + "\n"
for key in self.mD:
a = a +'"'+ key +'"'+ "\t"
for i in range(self.docCount):
if i < len(self.mD[key]):
a = a + str(self.mD[key][i]) + ",\t"
else:
a = a + "0.0,\t"
a = a + "\n"
else:
a = "\t"
for i in range(len(self.docs)):
a = a +'"'+ str(self.docs[i]) +'"'+ "\t"
a = a + "\n"
for i in range(len(self.terms)):
a = a +'"'+ self.terms[i] + '"\t'
for j in range(self.docCount):
a = a + str(self.tdm[i][j]) + ",\t"
a = a + "\n"
#msg = str(a)
return a