-
Notifications
You must be signed in to change notification settings - Fork 280
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
推理时 解析model output变量 #142
Comments
请问你解决了吗 |
@USTCdyf , not yet |
你好,我也遇到和你一样的问题,请问你后面有想到解决办法吗?另外代码中的test函数你能跑通吗? |
Hi @kwuking ,
你好,我希望在推理中解析出Target变量的值,从下面的代码,我理解的model的output的维度是[batch, pred_len+label_len, variables]. 就是第3个维度是模型的全部变量(X,Y)的维度。 但是我实际打印output的维度时发现,outputs.shape= [24,1280,1], 似乎模型每次输出的output只包含一个变量的结果?
features =M
如果training和infer的时候使用features=M, 我需要自己判断outputs的第三个维度具体对应哪个变量? 不知道我的理解对吗?
我同时检查了batch_x, batch_x_mark,batch_y_mark 这3个变量的输入维度,发现都是[24,96,1] , 似乎是因为data_loader.py的如下代码? 每次get_item只返回一个变量 (feat_id = 变量的序号)?
我的问题是,outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark) 可以实现同时输入全部变量吗? 假设有10个var, 预测长度=32,需要怎么做才能得到 10*32 的output?我应该怎么解析出Target变量的输出呢? 非常感谢
The text was updated successfully, but these errors were encountered: