-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
98 lines (84 loc) · 3.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# main.py
import streamlit as st
import re
from scrapping import (
scrapping_the_website,
remove_dom_content,
unwanted_content,
split_dom_content
)
from ollama_parse import parsing_with_ollama
# Step 1: Enhance URL validation function
def is_valid_url(url):
pattern = re.compile(r'^(https?://)?([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,6})([/a-zA-Z0-9#?&=-]*)?$')
return re.match(pattern, url) is not None
# Step 2: Create the UI with enhancements
st.title("Wrapo - Web Scraping and Parsing Tool")
# Initialize session state with an empty string if not already present
if 'url' not in st.session_state:
st.session_state.url = ''
if 'dom_content' not in st.session_state:
st.session_state.dom_content = None
# Sidebar for URL input and additional settings
with st.sidebar:
url = st.text_input("Enter URL", value=st.session_state.url)
if not is_valid_url(url) and url:
st.warning("Please enter a valid URL.")
st.session_state.url = url
# Option to select parsing method
parse_method = st.selectbox("Choose Parsing Method", ["Ollama", "Custom Extractor", "Basic Extractor"])
# Step 3: Add scraping and parsing functionality
if st.button("Scrape Website"):
if url:
with st.spinner('Scraping the website...'):
dom_content = scrapping_the_website(url) # Get raw DOM content
body_content = remove_dom_content(dom_content) # Clean body content
cleaned_content = unwanted_content(body_content) # Remove unwanted content
st.session_state.dom_content = cleaned_content # Store cleaned content in session state
st.success("Website scraped successfully!")
# Display the DOM content with a collapsible section
with st.expander("View Scraped DOM Content"):
st.text_area("DOM Content", cleaned_content, height=300)
# Step 4: Add functionality to parse and display results
if "dom_content" in st.session_state:
parse_description = st.text_area("What do you want to parse?", height=100)
# Progress bar while parsing
if parse_description and st.button("Parse"):
with st.spinner('Parsing the content...'):
dom_chunks = split_dom_content(st.session_state.dom_content) # Split content for parsing
if parse_method == "Ollama":
result = parsing_with_ollama(dom_chunks, parse_description)
elif parse_method == "Custom Extractor":
result = "Custom parsing result (to be implemented)"
else:
result = "Basic extraction (to be implemented)"
st.write(result)
# Step 5: Add additional features
if st.button("Download Cleaned Content"):
if st.session_state.dom_content:
st.download_button(
label="Download Cleaned Content",
data=st.session_state.dom_content,
file_name="cleaned_content.txt",
mime="text/plain"
)
# Search functionality
search_term = st.text_input("Search in DOM Content")
if search_term and st.session_state.dom_content:
search_results = [line for line in st.session_state.dom_content.split("\n") if search_term.lower() in line.lower()]
if search_results:
st.write("Search Results:")
st.write("\n".join(search_results))
else:
st.write("No results found.")
# Step 6: Feedback form to collect user input
with st.expander("Provide Feedback"):
feedback = st.text_area("Share your feedback about the app:")
if st.button("Submit Feedback"):
st.success("Thank you for your feedback!")
# Step 7: Summary or sentiment analysis (Optional for future implementation)
# Implement a feature to summarize or analyze sentiment of the content
if st.button("Summarize Content"):
if st.session_state.dom_content:
summary = "Summary of content (to be implemented)"
st.write(summary)