-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_lqr_classic.py
352 lines (306 loc) · 16 KB
/
benchmark_lqr_classic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
'''
Author: Edoardo Caldarelli
Affiliation: Institut de Robòtica i Informàtica Industrial, CSIC-UPC
email: [email protected]
January 2024
'''
import scipy.linalg
import scipy.signal
import pathlib
import random
import control
import pickle
import scipy.linalg
import scipy.signal
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from regressors import *
from dynamical_systems import *
def validate_dyn_sys(regressor: KoopmanRegressor, true_trajectory, test_controls):
n_samples_traj = true_trajectory.shape[1]
A = regressor.A
B = regressor.B
C = regressor.C
xcurr_true = true_trajectory[:, 0].reshape([-1, 1])
phi_xcurr = regressor.lift(xcurr_true)
xcurr = phi_xcurr
lifted_traj = xcurr
simulated_traj = C @ xcurr
for i in range(0, n_samples_traj - 1):
xcurr = A @ xcurr + B @ test_controls[:, i].reshape([-1, 1])
simulated_traj = np.hstack((simulated_traj, C @ xcurr))
lifted_traj = np.hstack((lifted_traj, xcurr))
# Compute RMSE
rmse = np.sqrt(np.sum(np.square(true_trajectory - simulated_traj))) / np.sqrt(np.sum(np.square(simulated_traj))) * 100
return rmse
def learn_hyperparams(X, Y, kapprox, path_to_data, state_bounds=None):
if kapprox == 'nystrom':
cv_regr = KoopmanNystromRegressor(n_inputs)
kernels = [KernelWrapper([1, 1])]
clf = GridSearchCV(cv_regr, {'kernel': kernels,
'gamma': np.power(10.0, np.arange(-6, -2, 0.25)),
'm': [500]},
scoring='neg_root_mean_squared_error',
verbose=3,
n_jobs=-1)
else:
cv_regr = KoopmanSplineRegressor(n_inputs, state_bounds)
clf = GridSearchCV(cv_regr, {'gamma': np.power(10.0, np.arange(-6, -2, 0.25)),
'm': [500]},
scoring='neg_root_mean_squared_error',
verbose=3,
n_jobs=-1)
clf.fit(X.T, Y.T)
with open(f"{path_to_data}/cross_validated_kern_params_{kapprox}.npy", 'wb') as f:
pickle.dump(clf, f)
def lqr_control(num_steps, reference, initial_state, regressor, K):
A = regressor.A
B = regressor.B
C = regressor.C
phi_new = regressor.lift(initial_state)
phi_reference = regressor.lift(reference)
visited_states = np.empty((n_states, 0))
visited_states = np.hstack((initial_state, visited_states))
u_s = np.empty((n_inputs, 0))
x_new = initial_state
for i in range(0, num_steps):
u_op = K @ (phi_reference - phi_new)
u_s = np.hstack((u_s, u_op.reshape(B.shape[1], 1)))
new_state = C @ phi_new
visited_states = np.hstack((visited_states, new_state))
# phi_new = A @ phi_new + B @ u_op
x_new = dynamical_system.update_SOM(x_new, u_op)
phi_new = regressor.lift(x_new)
x_s = visited_states[0, :].T
y_s = visited_states[1, :].T
return x_s, y_s, u_s
def open_loop_control(dynamical_system, initial_state, controls):
state = initial_state
states = state.reshape([-1, 1])
for i in range(0, controls.shape[1]):
state = dynamical_system.update_SOM(state, controls[:, i])
states = np.hstack((states, state))
return states
def generate_dataset(dynamical_system: DynamicalSystem, n_trajs: int, n_samples_traj: int):
X = np.zeros((dynamical_system.n_states + 1, n_trajs * n_samples_traj))
Y = np.zeros((dynamical_system.n_states, n_trajs * n_samples_traj))
indx = 0
for i in range(0, n_trajs):
length = np.sqrt(np.random.uniform(0, dynamical_system.radius_sampling))
angle = np.pi * np.random.uniform(0, dynamical_system.angle_sampling)
x_curr = np.array([length * np.cos(angle), length * np.sin(angle)]).reshape([-1, 1])
curr_traj = x_curr
for j in range(0, n_samples_traj):
u_curr = np.random.uniform(dynamical_system.input_lb, dynamical_system.input_ub).reshape([dynamical_system.n_inputs, 1])
curr_augm_state = np.vstack((x_curr, u_curr))
X[:, indx] = np.squeeze(curr_augm_state)
x_curr = dynamical_system.update_SOM(x_curr, u_curr)
curr_traj = np.hstack((curr_traj, x_curr))
Y[:, indx] = np.squeeze(x_curr)
indx = indx + 1
plt.plot(curr_traj.T[:, 0], curr_traj.T[:, 1], alpha=0.5, color='C1', linewidth=0.8)
return X, Y
def simulate_true_system(dynamical_system: DynamicalSystem, T):
length = np.sqrt(np.random.uniform(0, dynamical_system.radius_sampling))
angle = np.pi * np.random.uniform(0, dynamical_system.angle_sampling)
initial_state = np.array([length * np.cos(angle), length * np.sin(angle)]).reshape([-1, 1])
times = np.linspace(0, T, int(1 / dynamical_system.Ts))
u_s = 1.0 * scipy.signal.square(2 * np.pi * 10/3 * times)
state = initial_state
visited_states = state.reshape([-1, 1])
for u in u_s:
state = dynamical_system.update_SOM(state, u)
visited_states = np.hstack((visited_states, state.reshape([-1, 1])))
return visited_states, u_s.reshape([dynamical_system.n_inputs, -1])
if __name__ == '__main__':
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.rcParams.update({'font.size': 25})
system = "duffing"
gen_dataset = False
cross_validate = False
validate_sys_id = False # Set to false to test the LQR, true to test the open loop forecasts
dynamical_system = None
if system == 'duffing':
model_params = {'Ts': 0.01,
'name': system,
'n_states': 2,
'n_inputs': 1,
'radius_sampling': 1.0,
'angle_sampling': 2,
'input_lb': [-1],
'input_ub': [1]}
dynamical_system = DuffingOscillator(**model_params)
else:
print("Invalid system ID!")
exit(1)
n_trajs = 100
simulation_horizon = 2 # s
n_samples_traj = int(simulation_horizon // dynamical_system.Ts)
np.random.seed(0) # Fix seed for dataset creation
random.seed(0)
path_to_data = pathlib.Path(f"./{system}")
path_to_data.mkdir(exist_ok=True)
if gen_dataset:
X, Y = generate_dataset(dynamical_system, n_trajs, n_samples_traj)
with open(f"{path_to_data}/dataset.npy", 'wb') as f:
pickle.dump((X, Y), f)
# with open(f"{path_to_experiment}/dataset.npy", 'rb') as f:
# X, Y = pickle.load(f)
X = np.hstack((np.loadtxt("duffing/duffing_x_forced.csv", delimiter=','), np.loadtxt("duffing/duffing_x_unforced.csv", delimiter=',')))
U = np.hstack((np.loadtxt("duffing/duffing_u_forced.csv", delimiter=',').reshape([1, -1]), np.zeros((1, np.loadtxt("duffing/duffing_x_unforced.csv", delimiter=',').shape[1]))))
X = np.vstack((X,
U))
Y = np.hstack((np.loadtxt("duffing/duffing_y_forced.csv", delimiter=','), np.loadtxt("duffing/duffing_y_unforced.csv", delimiter=',')))
ms = np.around(np.logspace(1, 2.3, num=20)).astype(int) # np.arange(10, 200, 100)
# ms = np.logspace(1, 2.6, num=5, dtype=int)
# ms = np.array([20])
labels = ['nystrom', 'splines']
n_inputs = dynamical_system.n_inputs
n_states = dynamical_system.n_states
state_bounds_params = np.array([dynamical_system.radius_sampling, dynamical_system.angle_sampling]) # np.vstack((state_mins, state_maxs))
test_trajectories = []
test_controls = []
n_seeds = 200
for seed in range(0, n_seeds):
np.random.seed(seed) # Fix seed
random.seed(seed)
test_trajectory, test_control = simulate_true_system(dynamical_system, simulation_horizon)
test_trajectories.append(test_trajectory)
test_controls.append(test_control)
plt.show()
for k, kapprox in enumerate(labels):
if cross_validate:
n_val_trajs = 20
n_samples_val_trajs = int(simulation_horizon // dynamical_system.Ts)
Xval, Yval = generate_dataset(dynamical_system, n_val_trajs, n_samples_val_trajs)
if kapprox == 'nystrom':
learn_hyperparams(Xval, Yval, kapprox, path_to_data)
else:
learn_hyperparams(Xval, Yval, kapprox, path_to_data, state_bounds_params)
if validate_sys_id:
for k, kapprox in enumerate(labels):
all_rmse_across_seeds = np.empty((0, ms.shape[0]))
with open(f"{path_to_data}/cross_validated_kern_params_{kapprox}.npy", 'rb') as f:
clf = pickle.load(f)
kernel_params = clf.best_params_
for seed in range(0, n_seeds):
np.random.seed(seed) # Fix seed
random.seed(seed)
all_rmses = [] # Collect RMSEs across all testing trajectories
all_ls = [1, 1]
rmses = []
for m_indx, m in enumerate(ms):
print('m ', m, " seed ", seed)
# print("Curr number of features: ", m)
regressor = None
if kapprox == 'nystrom':
# kernel_params['kernel'] = KernelWrapper([1] * n_states)
kernel_params['m'] = m
# print(kernel_params)
regressor = KoopmanNystromRegressor(n_inputs, **kernel_params)
elif kapprox == 'splines':
kernel_params['m'] = m
regressor = KoopmanSplineRegressor(n_inputs, state_bounds_params=state_bounds_params,
**kernel_params)
regressor.fit(X.T,
Y.T) # Careful with transposition (shape required by sklearn estimator API, used for CV)
# Evaluate the prediction accuracy in open loop
test_trajectory = test_trajectories[seed]
test_control = test_controls[seed]
curr_rmse = validate_dyn_sys(regressor, test_trajectory, test_control)
# plt.scatter(test_trajectory[0, 0], test_trajectory[1, 0], color='C3', s=curr_rmse)
rmses.append(curr_rmse)
print(rmses)
all_rmses.append(rmses)
all_rmses_array = np.array(all_rmses)
all_rmse_across_seeds = np.vstack((all_rmse_across_seeds, all_rmses_array))
print(np.median(all_rmse_across_seeds, axis=0))
print(np.percentile(all_rmse_across_seeds, axis=0, q=15))
print(np.percentile(all_rmse_across_seeds, axis=0, q=85))
np.savetxt(f"{path_to_data}/all_rmses_{kapprox}_double_dataset.csv", all_rmse_across_seeds)
plt.show()
else:
first_states_nys = []
second_states_nys = []
first_states_splines = []
second_states_splines = []
for k, kapprox in enumerate(labels):
with open(f"{path_to_data}/cross_validated_kern_params_{kapprox}.npy", 'rb') as f:
clf = pickle.load(f)
kernel_params = clf.best_params_
m = 20
for seed in range(0, n_seeds):
np.random.seed(seed) # Fix seed
random.seed(seed)
print("Seed ", seed)
if kapprox == 'nystrom':
kernel_params['m'] = m
regressor = KoopmanNystromRegressor(n_inputs, **kernel_params)
elif kapprox == 'splines':
kernel_params['m'] = m
regressor = KoopmanSplineRegressor(n_inputs, state_bounds_params, **kernel_params)
regressor.fit(X.T,
Y.T)
A = regressor.A
B = regressor.B
C = regressor.C
initial_state = np.array([-0.5, 0.0]).reshape([-1, 1])
R = np.eye(n_inputs)
Q = C.T @ C
reference = np.array([0.0, 0.0]).reshape([-1, 1])
K, _, E = control.dlqr(A, B, Q, R)
end = int(10 * simulation_horizon / dynamical_system.Ts)
xs, ys, us = lqr_control(end, reference, initial_state, regressor, K)
states = open_loop_control(dynamical_system, initial_state, us)
if kapprox == 'nystrom':
first_states_nys.append(states[0, :])
second_states_nys.append(states[1, :])
else:
first_states_splines.append(states[0, :])
second_states_splines.append(states[1, :])
first_states_splines = np.array(first_states_splines)
first_states_nys = np.array(first_states_nys)
second_states_nys = np.array(second_states_nys)
second_states_splines = np.array(second_states_splines)
# np.savetxt(f"{path_to_experiment}/first_state_control_splines.csv", first_states_splines)
# np.savetxt(f"{path_to_experiment}/first_state_control_nystrom.csv", first_states_nys)
#
# np.savetxt(f"{path_to_experiment}/second_state_control_splines.csv", second_states_splines)
# np.savetxt(f"{path_to_experiment}/second_state_control_nystrom.csv", second_states_nys)
#
# first_states_splines = np.loadtxt(f"{path_to_experiment}/first_state_control_splines.csv", )
# first_states_nys = np.loadtxt(f"{path_to_experiment}/first_state_control_nystrom.csv", )
#
# second_states_splines = np.loadtxt(f"{path_to_experiment}/second_state_control_splines.csv", )
# second_states_nys = np.loadtxt(f"{path_to_experiment}/second_state_control_nystrom.csv", )
fig = plt.figure(figsize=(8, 4))
plt.plot(np.arange(0, first_states_nys.shape[1]) * dynamical_system.Ts, np.median(first_states_nys, axis=0), color=f'C0', linewidth=2)
plt.plot(np.arange(0, first_states_splines.shape[1]) * dynamical_system.Ts, np.nanmedian(first_states_splines, axis=0), color=f'C1', linewidth=2)
plt.fill_between(np.arange(0, first_states_nys.shape[1]) * dynamical_system.Ts, np.percentile(first_states_nys, axis=0, q=15), np.percentile(first_states_nys, axis=0, q=85), alpha=0.3, color='C0')
plt.fill_between(np.arange(0, first_states_splines.shape[1]) * dynamical_system.Ts, np.nanpercentile(first_states_splines, axis=0, q=15), np.nanpercentile(first_states_splines, axis=0, q=85), alpha=0.3, color='C1')
plt.xlabel('t [s]')
plt.ylabel('$x_1$')
plt.grid(visible=True, which='both')
plt.legend(["Nyström Matérn-5/2", "Splines"], bbox_to_anchor=(0.0, 1.02, 1.0, 0.2), loc='lower left',
mode='expand',
borderaxespad=0, ncol=3, handlelength=1.0)
plt.tight_layout()
# plt.savefig(f"{path_to_experiment}/control_x1.png", dpi=300, bbox_inches='tight',
# pad_inches=0)
plt.show()
fig = plt.figure(figsize=(8, 4))
plt.plot(np.arange(0, second_states_nys.shape[1]) * dynamical_system.Ts, np.median(second_states_nys, axis=0), color=f'C0', linewidth=2)
plt.plot(np.arange(0, second_states_splines.shape[1]) * dynamical_system.Ts, np.nanmedian(second_states_splines, axis=0), color=f'C1', linewidth=2)
plt.fill_between(np.arange(0, second_states_nys.shape[1]) * dynamical_system.Ts, np.percentile(second_states_nys, axis=0, q=15), np.percentile(second_states_nys, axis=0, q=85), alpha=0.3, color='C0')
plt.fill_between(np.arange(0, second_states_splines.shape[1]) * dynamical_system.Ts, np.nanpercentile(second_states_splines, axis=0, q=15), np.nanpercentile(second_states_splines, axis=0, q=85), alpha=0.3, color='C1')
plt.xlabel('t [s]')
plt.ylabel('$x_2$')
plt.grid(visible=True, which='both')
plt.legend(["Nyström Matérn-5/2", "Splines"], bbox_to_anchor=(0.0, 1.02, 1.0, 0.2), loc='lower left',
mode='expand',
borderaxespad=0, ncol=3, handlelength=1.0)
plt.tight_layout()
# plt.savefig(f"{path_to_experiment}/control_x2.png", dpi=300, bbox_inches='tight',
# pad_inches=0)
plt.show()