-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
45 lines (32 loc) · 1.24 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from transformers import VisionEncoderDecoderModel
from transformers import ViTFeatureExtractor
from transformers import AutoTokenizer
import torch
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(
images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds