-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstart.py
69 lines (52 loc) · 1.95 KB
/
start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
from transformers import VisionEncoderDecoderModel
from transformers import ViTFeatureExtractor
from transformers import AutoTokenizer
import torch
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(
images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
# st.sidebar.header('Navigation')
st.sidebar.subheader('Navigation')
nav = st.sidebar.radio(' ', ['Home', 'About'])
if nav == 'Home':
st.title('Welcome to Pixter,')
st.subheader('a one stop destination for image manipulation tools')
st.image('./Artificial.jpg', width=800)
st.header('Try out our AI image caption generator')
img = st.file_uploader('Upload your image here')
if img:
st.text('Here is the image you uploaded')
lis = predict_step([img])[0]
st.image(img, width=200)
st.text(lis)
else:
st.title('About Us')
st.text('This project is done by a team of two')
st.text(' students,')
st.text('Laanith chouhan and Thanish.')