forked from kaize0409/Meta-GDN_AnomalyDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
46 lines (37 loc) · 1.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import numpy as np
import torch
from time import perf_counter
import networkx as nx
import random
from sklearn.metrics import roc_auc_score, average_precision_score, auc, precision_recall_curve
import scipy.sparse as sp
def aucPerformance(y_true, y_pred):
y_true = y_true.flatten()
y_pred = y_pred.flatten()
roc_auc = roc_auc_score(y_true, y_pred)
precision, recall, _ = precision_recall_curve(y_true, y_pred)
auc_pr = auc(recall, precision)
ap = average_precision_score(y_true, y_pred)
return roc_auc, auc_pr, ap
def sgc_precompute(features, adj, degree):
# compute S^K
for i in range(degree):
features = torch.spmm(adj, features)
return features
def normalize_adjacency(adj):
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
def normalize_feature(feature):
# Row-wise normalization of sparse feature matrix
rowsum = np.array(feature.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(feature)
return mx