-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom.xml
100 lines (55 loc) · 3.98 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Liaoer</title>
<link href="/atom.xml" rel="self"/>
<link href="http://yoursite.com/"/>
<updated>2018-08-23T05:12:13.431Z</updated>
<id>http://yoursite.com/</id>
<author>
<name>John Doe</name>
</author>
<generator uri="http://hexo.io/">Hexo</generator>
<entry>
<title>Rendering Equation Insight</title>
<link href="http://yoursite.com/2018/07/24/RenderingEquation/"/>
<id>http://yoursite.com/2018/07/24/RenderingEquation/</id>
<published>2018-07-24T12:12:10.000Z</published>
<updated>2018-08-23T05:12:13.431Z</updated>
<content type="html"><![CDATA[<p><img src="https://ws1.sinaimg.cn/large/88fb12c0gy1fuiuglh78tj20k50kj0td.jpg" alt></p><p><img src="https://ws1.sinaimg.cn/large/88fb12c0gy1fuiug0c8tij20sg0fkq57.jpg" alt></p>]]></content>
<summary type="html">
<p><img src="https://ws1.sinaimg.cn/large/88fb12c0gy1fuiuglh78tj20k50kj0td.jpg" alt></p>
<p><img src="https://ws1.sinaimg.cn/large/88fb12c0g
</summary>
<category term="rendering" scheme="http://yoursite.com/categories/rendering/"/>
<category term="Rendering" scheme="http://yoursite.com/tags/Rendering/"/>
</entry>
<entry>
<title>立体角(Solid Angle)</title>
<link href="http://yoursite.com/2018/07/06/SolidAngle/"/>
<id>http://yoursite.com/2018/07/06/SolidAngle/</id>
<published>2018-07-06T11:09:20.000Z</published>
<updated>2018-07-13T07:19:22.391Z</updated>
<content type="html"><![CDATA[<p><img src="https://ws1.sinaimg.cn/large/88fb12c0gy1ft89ddjaamj209c08g74e.jpg" alt="Solid Angle"></p>]]></content>
<summary type="html">
<p><img src="https://ws1.sinaimg.cn/large/88fb12c0gy1ft89ddjaamj209c08g74e.jpg" alt="Solid Angle"></p>
</summary>
<category term="rendering" scheme="http://yoursite.com/categories/rendering/"/>
<category term="computer graphics" scheme="http://yoursite.com/tags/computer-graphics/"/>
<category term="math" scheme="http://yoursite.com/tags/math/"/>
</entry>
<entry>
<title>LaTex</title>
<link href="http://yoursite.com/2015/06/24/LaTex/"/>
<id>http://yoursite.com/2015/06/24/LaTex/</id>
<published>2015-06-24T11:52:40.000Z</published>
<updated>2018-07-13T07:17:21.727Z</updated>
<content type="html"><![CDATA[<p>$$E=mc^2$$</p><p>\begin{vmatrix}<br>1 & 2\<br>3 & 4<br>\end{vmatrix}</p><p>$$\left[<br>\begin{array}{cc|c}<br>1&2&3\<br>4&5&6<br>\end{array}<br>\right]$$</p><h2 id="公式"><a href="#公式" class="headerlink" title="公式"></a>公式</h2><p>$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1$</p><p>$$J_\alpha(x)=\sum _{m=0}^\infty \frac{(-1)^ m}{m! , \Gamma (m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha }$$</p><p>$$\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2}+ \frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right)$$</p><p>\begin{aligned}<br>\dot{x} & = \sigma(y-x) \<br>\dot{y} & = \rho x - y - xz \<br>\dot{z} & = -\beta z + xy<br>\end{aligned}</p><p>$$ i\hbar\frac{\partial \psi}{\partial t}= \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2}+ \frac{\partial^2}{\partial y^2}+ \frac{\partial^2}{\partial z^2}\right) \psi + V \psi.$$</p>]]></content>
<summary type="html">
<p>$$E=mc^2$$</p>
<p>\begin{vmatrix}<br>1 &amp; 2\<br>3 &amp; 4<br>\end{vmatrix}</p>
<p>$$\left[<br>\begin{array}{cc|c}<br>1&amp;2&amp;3\<br
</summary>
<category term="LaTex" scheme="http://yoursite.com/categories/LaTex/"/>
<category term="LaTex" scheme="http://yoursite.com/tags/LaTex/"/>
</entry>
</feed>