-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerateSynImages.m
690 lines (673 loc) · 37.2 KB
/
generateSynImages.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
function synImages = generateSynImages(targetVar,targetDim,learningDates,sortedDates,mps,geoRef,outputDir,generationType,nanValue,validation,optimisation,bootstrap,bsSaveAll,nbImages,ensemble,outputType)
%
%
%
% REDO DOCUMENTATION
%
%
%
targetVarL = lower(targetVar);
% Check if output directories exist, if not create them
for i = 1:numel(targetVarL)
disp(strcat("Processing variable '",convertStringsToChars(targetVar(i)),"'..."))
% Preallocate variables for efficiency
learningDatesDate = table2array(learningDates(:,'date'));
learningData = table2array(learningDates(:,i+1));
if generationType == 5
% Mask with shape of image
mask = double(~isnan(learningData{1,1}));
mask(mask==1) = nan;
mask(mask==0) = nanValue;
% Map with numbered pixels, to prevent pixel movement
values = 1:(size(mask,1) * size(mask,2));
loc = reshape(values, size(mask,1), size(mask,2));
mask = cat(3, mask, loc);
% Kernel creation
ki = ones(mps.kernel_dims);
for w = 1:length(mps.kernel_weights)
ki(:,:,w) = ki(:,:,w) .* mps.kernel_weights(w);
end
end
if targetDim ~= 1
imgLength = size(learningData{1},1);
imgWidth = size(learningData{1},2);
GeoRef = geoRef.(targetVar(i));
selectedImages = single(NaN(imgLength, imgWidth, size(sortedDates{1,2}, 1)));
%resultImages = cell(size(sortedDates, 1), 1);
imagesSynAll = single(NaN(imgLength,imgWidth,size(sortedDates,1)));
map = imagesSynAll;
varMap = imagesSynAll;
availablePix = imagesSynAll;
varianceBS = imagesSynAll;
if bootstrap == true
imagesSynAll = cell(size(sortedDates,1),1);
disp([' Bootstrap switch ON, using ' num2str(ensemble) ' ensembles'])
end
% Display progress
if optimisation == false
progress = 0;
if outputType == 1
fprintf(1,' Downloading synthetic GeoTiff images: %3.0f%%\n',progress);
else
fprintf(1,' Downloading synthetic images as NetCDF file: %3.0f%%\n',progress);
end
end
% netCDF file definition
if outputType == 2 && bootstrap == false
% Define the main netCDF file
outputBaseName = strcat(targetVarL(i),'.nc');
fullDestinationFileName = fullfile(outputDir, outputBaseName);
% Assign the CRS value
%try
crs_wkt = wktstring(GeoRef.GeographicCRS);
% Extract the EPSG code from the WKT string using regular expressions
expression = 'ID\["EPSG",(\d+)\]';
tokens = regexp(crs_wkt, expression, 'tokens');
crs_value = tokens{1};
%catch
%end
% Create the main netCDF file and define dimensions
ncid = netcdf.create(fullDestinationFileName, 'NETCDF4');
dimid_lat = netcdf.defDim(ncid, 'lat', GeoRef.RasterSize(1));
dimid_lon = netcdf.defDim(ncid, 'lon', GeoRef.RasterSize(2));
dimid_time = netcdf.defDim(ncid, 'time', netcdf.getConstant('NC_UNLIMITED'));
% Define variables
varid = netcdf.defVar(ncid, targetVarL(i), 'double', [dimid_lon, dimid_lat, dimid_time]);
timeid = netcdf.defVar(ncid, 'time', 'double', dimid_time);
latid = netcdf.defVar(ncid, 'lat', 'double', dimid_lat);
lonid = netcdf.defVar(ncid, 'lon', 'double', dimid_lon);
% Define attributes
netcdf.putAtt(ncid, varid, 'long_name', targetVarL(i));
netcdf.putAtt(ncid, varid, '_FillValue', -999);
netcdf.putAtt(ncid, timeid, 'long_name', 'time');
netcdf.putAtt(ncid, timeid, 'units', 'days since 1970-01-01');
netcdf.putAtt(ncid, timeid, 'calendar', 'proleptic_gregorian');
netcdf.putAtt(ncid, latid, 'long_name', 'latitude');
netcdf.putAtt(ncid, latid, 'units', 'degrees_north');
netcdf.putAtt(ncid, lonid, 'long_name', 'longitude');
netcdf.putAtt(ncid, lonid, 'units', 'degrees_east');
% Assign the CRS as a global attribute to the netCDF file
netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'), 'crs_wkt', crs_wkt);
netcdf.putAtt(ncid, netcdf.getConstant('NC_GLOBAL'), 'crs', crs_value);
% End definition mode
netcdf.endDef(ncid);
% Assign latitude and longitude values
lat_start = GeoRef.LatitudeLimits(2);
lat_end = GeoRef.LatitudeLimits(1);
lon_start = GeoRef.LongitudeLimits(1);
lon_end = GeoRef.LongitudeLimits(2);
lat_size = imgLength;
lon_size = imgWidth;
lat_step = (lat_end - lat_start) / lat_size;
lon_step = (lon_end - lon_start) / lon_size;
lat = lat_start:lat_step:lat_end;
lon = lon_start:lon_step:lon_end;
% Adjust the size of lat and lon vectors to match the image dimensions
lat = lat(1:lat_size)+(lat_step/2);
lon = lon(1:lon_size)+(lon_step/2);
% Assign latitude and longitude values to the corresponding variables
netcdf.putVar(ncid,latid,lat);
netcdf.putVar(ncid,lonid,lon);
elseif bootstrap == true
% ---- MININMAL ----
% Define the main netCDF file
outputBaseNameMin = strcat(targetVarL(i),'_min.nc');
fullDestinationFileNameMin = fullfile(outputDir, outputBaseNameMin);
% Assign the CRS value
crs_wkt = wktstring(GeoRef.GeographicCRS);
% Extract the EPSG code from the WKT string using regular expressions
expression = 'ID\["EPSG",(\d+)\]';
tokens = regexp(crs_wkt, expression, 'tokens');
crs_value = tokens{1};
% Create the main netCDF file and define dimensions
ncid_min = netcdf.create(fullDestinationFileNameMin, 'NETCDF4');
dimid_lat = netcdf.defDim(ncid_min, 'lat', GeoRef.RasterSize(1));
dimid_lon = netcdf.defDim(ncid_min, 'lon', GeoRef.RasterSize(2));
dimid_time = netcdf.defDim(ncid_min, 'time', netcdf.getConstant('NC_UNLIMITED'));
% Define variables
varid = netcdf.defVar(ncid_min, targetVarL(i), 'double', [dimid_lon, dimid_lat, dimid_time]);
timeid = netcdf.defVar(ncid_min, 'time', 'double', dimid_time);
latid = netcdf.defVar(ncid_min, 'lat', 'double', dimid_lat);
lonid = netcdf.defVar(ncid_min, 'lon', 'double', dimid_lon);
% Define attributes
netcdf.putAtt(ncid_min, varid, 'long_name', targetVarL(i));
netcdf.putAtt(ncid_min, varid, '_FillValue', -999);
netcdf.putAtt(ncid_min, timeid, 'long_name', 'time');
netcdf.putAtt(ncid_min, timeid, 'units', 'days since 1970-01-01');
netcdf.putAtt(ncid_min, timeid, 'calendar', 'proleptic_gregorian');
netcdf.putAtt(ncid_min, latid, 'long_name', 'latitude');
netcdf.putAtt(ncid_min, latid, 'units', 'degrees_north');
netcdf.putAtt(ncid_min, lonid, 'long_name', 'longitude');
netcdf.putAtt(ncid_min, lonid, 'units', 'degrees_east');
% Assign the CRS as a global attribute to the netCDF file
netcdf.putAtt(ncid_min, netcdf.getConstant('NC_GLOBAL'), 'crs_wkt', crs_wkt);
netcdf.putAtt(ncid_min, netcdf.getConstant('NC_GLOBAL'), 'crs', crs_value);
% End definition mode
netcdf.endDef(ncid_min);
% Assign latitude and longitude values
lat_start = GeoRef.LatitudeLimits(2);
lat_end = GeoRef.LatitudeLimits(1);
lon_start = GeoRef.LongitudeLimits(1);
lon_end = GeoRef.LongitudeLimits(2);
lat_size = imgLength;
lon_size = imgWidth;
lat_step = (lat_end - lat_start) / lat_size;
lon_step = (lon_end - lon_start) / lon_size;
lat = lat_start:lat_step:lat_end;
lon = lon_start:lon_step:lon_end;
% Adjust the size of lat and lon vectors to match the image dimensions
lat = lat(1:lat_size)+(lat_step/2);
lon = lon(1:lon_size)+(lon_step/2);
% Assign latitude and longitude values to the corresponding variables
netcdf.putVar(ncid_min,latid,lat);
netcdf.putVar(ncid_min,lonid,lon);
% ---- DETERMINISTIC ----
% Define the main netCDF file
outputBaseNameDet = strcat(targetVarL(i),'_det.nc');
fullDestinationFileNameDet = fullfile(outputDir, outputBaseNameDet);
% Assign the CRS value
crs_wkt = wktstring(GeoRef.GeographicCRS);
% Extract the EPSG code from the WKT string using regular expressions
expression = 'ID\["EPSG",(\d+)\]';
tokens = regexp(crs_wkt, expression, 'tokens');
crs_value = tokens{1};
% Create the main netCDF file and define dimensions
ncid_det = netcdf.create(fullDestinationFileNameDet, 'NETCDF4');
dimid_lat = netcdf.defDim(ncid_det, 'lat', GeoRef.RasterSize(1));
dimid_lon = netcdf.defDim(ncid_det, 'lon', GeoRef.RasterSize(2));
dimid_time = netcdf.defDim(ncid_det, 'time', netcdf.getConstant('NC_UNLIMITED'));
% Define variables
varid = netcdf.defVar(ncid_det, targetVarL(i), 'double', [dimid_lon, dimid_lat, dimid_time]);
timeid = netcdf.defVar(ncid_det, 'time', 'double', dimid_time);
latid = netcdf.defVar(ncid_det, 'lat', 'double', dimid_lat);
lonid = netcdf.defVar(ncid_det, 'lon', 'double', dimid_lon);
% Define attributes (similar to your existing code)
netcdf.putAtt(ncid_det, varid, 'long_name', targetVarL(i));
netcdf.putAtt(ncid_det, varid, '_FillValue', -999);
netcdf.putAtt(ncid_det, timeid, 'long_name', 'time');
netcdf.putAtt(ncid_det, timeid, 'units', 'days since 1970-01-01');
netcdf.putAtt(ncid_det, timeid, 'calendar', 'proleptic_gregorian');
netcdf.putAtt(ncid_det, latid, 'long_name', 'latitude');
netcdf.putAtt(ncid_det, latid, 'units', 'degrees_north');
netcdf.putAtt(ncid_det, lonid, 'long_name', 'longitude');
netcdf.putAtt(ncid_det, lonid, 'units', 'degrees_east');
% Assign the CRS as a global attribute to the netCDF file
netcdf.putAtt(ncid_det, netcdf.getConstant('NC_GLOBAL'), 'crs_wkt', crs_wkt);
netcdf.putAtt(ncid_det, netcdf.getConstant('NC_GLOBAL'), 'crs', crs_value);
% End definition mode
netcdf.endDef(ncid_det);
% Assign latitude and longitude values
lat_start = GeoRef.LatitudeLimits(2);
lat_end = GeoRef.LatitudeLimits(1);
lon_start = GeoRef.LongitudeLimits(1);
lon_end = GeoRef.LongitudeLimits(2);
lat_size = imgLength;
lon_size = imgWidth;
lat_step = (lat_end - lat_start) / lat_size;
lon_step = (lon_end - lon_start) / lon_size;
lat = lat_start:lat_step:lat_end;
lon = lon_start:lon_step:lon_end;
% Adjust the size of lat and lon vectors to match the image dimensions
lat = lat(1:lat_size)+(lat_step/2);
lon = lon(1:lon_size)+(lon_step/2);
% Assign latitude and longitude values to the corresponding variables
netcdf.putVar(ncid_det,latid,lat);
netcdf.putVar(ncid_det,lonid,lon);
% ---- MAXINMAL ----
% Define the main netCDF file
outputBaseNameMax = strcat(targetVarL(i),'_max.nc');
fullDestinationFileNameMax = fullfile(outputDir, outputBaseNameMax);
% Assign the CRS value
crs_wkt = wktstring(GeoRef.GeographicCRS);
% Extract the EPSG code from the WKT string using regular expressions
expression = 'ID\["EPSG",(\d+)\]';
tokens = regexp(crs_wkt, expression, 'tokens');
crs_value = tokens{1};
% Create the main netCDF file and define dimensions
ncid_max = netcdf.create(fullDestinationFileNameMax, 'NETCDF4');
dimid_lat = netcdf.defDim(ncid_max, 'lat', GeoRef.RasterSize(1));
dimid_lon = netcdf.defDim(ncid_max, 'lon', GeoRef.RasterSize(2));
dimid_time = netcdf.defDim(ncid_max, 'time', netcdf.getConstant('NC_UNLIMITED'));
% Define variables
varid = netcdf.defVar(ncid_max, targetVarL(i), 'double', [dimid_lon, dimid_lat, dimid_time]);
timeid = netcdf.defVar(ncid_max, 'time', 'double', dimid_time);
latid = netcdf.defVar(ncid_max, 'lat', 'double', dimid_lat);
lonid = netcdf.defVar(ncid_max, 'lon', 'double', dimid_lon);
% Define attributes (similar to your existing code)
netcdf.putAtt(ncid_max, varid, 'long_name', targetVarL(i));
netcdf.putAtt(ncid_max, varid, '_FillValue', -999);
netcdf.putAtt(ncid_max, timeid, 'long_name', 'time');
netcdf.putAtt(ncid_max, timeid, 'units', 'days since 1970-01-01');
netcdf.putAtt(ncid_max, timeid, 'calendar', 'proleptic_gregorian');
netcdf.putAtt(ncid_max, latid, 'long_name', 'latitude');
netcdf.putAtt(ncid_max, latid, 'units', 'degrees_north');
netcdf.putAtt(ncid_max, lonid, 'long_name', 'longitude');
netcdf.putAtt(ncid_max, lonid, 'units', 'degrees_east');
% Assign the CRS as a global attribute to the netCDF file
netcdf.putAtt(ncid_max, netcdf.getConstant('NC_GLOBAL'), 'crs_wkt', crs_wkt);
netcdf.putAtt(ncid_max, netcdf.getConstant('NC_GLOBAL'), 'crs', crs_value);
% End definition mode
netcdf.endDef(ncid_max);
% Assign latitude and longitude values
lat_start = GeoRef.LatitudeLimits(2);
lat_end = GeoRef.LatitudeLimits(1);
lon_start = GeoRef.LongitudeLimits(1);
lon_end = GeoRef.LongitudeLimits(2);
lat_size = imgLength;
lon_size = imgWidth;
lat_step = (lat_end - lat_start) / lat_size;
lon_step = (lon_end - lon_start) / lon_size;
lat = lat_start:lat_step:lat_end;
lon = lon_start:lon_step:lon_end;
% Adjust the size of lat and lon vectors to match the image dimensions
lat = lat(1:lat_size)+(lat_step/2);
lon = lon(1:lon_size)+(lon_step/2);
% Assign latitude and longitude values to the corresponding variables
netcdf.putVar(ncid_max,latid,lat);
netcdf.putVar(ncid_max,lonid,lon);
end
else
selectedImages = NaN(size(sortedDates{1,2}, 1),1);
%resultImages = NaN(size(sortedDates, 1), 1);
imagesSynAll = NaN(size(sortedDates,1),1);
map = imagesSynAll;
varMap = imagesSynAll;
availablePix = imagesSynAll;
varianceBS = imagesSynAll;
end
for rowIndex = 1:size(sortedDates,1)
if bootstrap == true
if bsSaveAll == true
outputDirBootstrap = fullfile(outputDir, 'bootstrap', string(sortedDates(rowIndex,1)));
if ~exist(outputDirBootstrap,'dir')
mkdir(outputDirBootstrap)
end
end
% Find the index of the current image in the Dates variable
[~, dateIndex] = ismember(sortedDates{rowIndex,2},learningDatesDate);
% Select the K best image from the Learning dataset and add it to selectedImages
for imageIndex = 1:nbImages %length(sortedDates{rowIndex,2})
if nbImages ~= length(sortedDates{rowIndex,2}) && imageIndex == 1
warning(['nbImages .ne. number of available analogues (' num2str(nbImages) ' vs ' num2str(length(sortedDates{rowIndex,2})) ')'])
end
selectedImages(:,:,imageIndex) = learningData{dateIndex(imageIndex)};
end
% Calculate either the mode or the mean of the selected images
if generationType == 1
% Calculate the mode and save it to resultImages
resultImages = mode(selectedImages,3);
elseif generationType == 2
% Calculate the mean and save it to resultImages
selectedDist = 1./sortedDates{rowIndex,3}(1:nbImages);
% Normalize the selectedDist values
normalizedWeights = selectedDist / sum(selectedDist);
% Perform element-wise multiplication with the weights
weightedImages = bsxfun(@times, selectedImages, reshape(normalizedWeights, 1, 1, nbImages)); %length(sortedDates{rowIndex,2})
varMap(:,:,rowIndex) = var(selectedImages,normalizedWeights,3);
resultImages = sum(weightedImages,3);
elseif generationType == 3
% Calculate the mean and save it to resultImages
resultImages = mean(selectedImages,3);
elseif generationType == 4
% Calculate the median and save it to resultImages
resultImages = median(selectedImages,3);
elseif generationType == 5
% Perform MPS simulation to generate result
cellSelImages = cell(1, size(selectedImages, 3));
selectedImages(isnan(selectedImages)) = nanValue;
for img = 1:size(selectedImages, 3)
cellSelImages{img} = cat(3, selectedImages(:, :, img), loc);
end
resultImages = g2s('-a','qs', ...
'-di',mask, ...
'-ti',cellSelImages, ...
'-ki',ki, ...
'-dt',mps.dataType, ...
'-k',mps.kValue, ...
'-n',mps.neighbours, ...
'-j',mps.processPwr);
resultImages = resultImages(:,:,1);
resultImages(resultImages==nanValue) = nan;
else
error('Generation type not defined!')
end
% Calculate the count of non-NaN values
availablePix(:,:,rowIndex) = sum(~isnan(weightedImages), 3);
if bsSaveAll == true
% Write the resulting image to a GeoTIFF file
outputBaseName = string(sortedDates(rowIndex,1)) + '_' + targetVarL(i) + '.tif';
fullDestinationFileName = fullfile(outputDir, 'datesAll', outputBaseName);
if isempty(GeoRef)
%disp(' Georeferencing files missing! Unreferenced output...')
t = Tiff(fullDestinationFileName, 'w');
tagstruct.ImageLength = imgLength;
tagstruct.ImageWidth = imgWidth;
tagstruct.Compression = Tiff.Compression.None;
tagstruct.SampleFormat = Tiff.SampleFormat.IEEEFP;
tagstruct.Photometric = Tiff.Photometric.MinIsBlack;
tagstruct.BitsPerSample = 32;
tagstruct.SamplesPerPixel = 1;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
t.setTag(tagstruct);
t.write(single(resultImages));
t.close();
else
geotiffwrite(fullDestinationFileName,single(resultImages),GeoRef,'TiffTags',struct('Compression',Tiff.Compression.None));
end
end
map(:,:,rowIndex) = resultImages;
resultImages(isnan(resultImages)) = -999;
% bootstrap
resultImagesBS = NaN(imgLength, imgWidth, ensemble);
%invDistance = 1 ./ sortedDates{rowIndex,3};
%bootstrapWeights = normalize(invDistance,'range',[0.1 1]); % normalise distance (3) / std (4) to [0.1 1]
%bootstrapWeights = invDistance/sum(invDistance);
for bs = 1:ensemble
%bootstrapDates = randsample(sortedDates{rowIndex,2},numel(sortedDates{rowIndex,2}),true,bootstrapWeights);
%bootstrapDates = randsample(sortedDates{rowIndex,2},numel(sortedDates{rowIndex,2}),true);
bootstrapDates = randsample(sortedDates{rowIndex,2}(1:nbImages),nbImages,true);
% Find the index of the current image in the Dates variable
[~, dateIndex] = ismember(bootstrapDates,learningDatesDate);
[~, distIndex] = ismember(bootstrapDates,sortedDates{rowIndex,2}(1:nbImages));
% Select the K best image from the Learning dataset and add it to selectedImages
for imageIndex = 1:nbImages %length(sortedDates{rowIndex,2})
if nbImages ~= length(sortedDates{rowIndex,2}) && imageIndex == 1
warning(['nbImages .ne. number of available analogues (' num2str(nbImages) ' vs ' num2str(length(sortedDates{rowIndex,2})) ')'])
end
selectedImages(:,:,imageIndex) = learningData{dateIndex(imageIndex)};
end
selectedDist = 1./sortedDates{rowIndex,3}(distIndex);
% Normalize the selectedDist values
normalizedWeights = selectedDist / sum(selectedDist);
% Perform element-wise multiplication with the weights
weightedImages = bsxfun(@times, selectedImages, reshape(normalizedWeights, 1, 1, nbImages)); %length(sortedDates{rowIndex,2})
% Calculate either the mode or the mean of the selected images
if generationType == 1
% Calculate the mode and save it to resultImagesBS
resultImagesBS(:,:,bs) = mode(selectedImages,3);
elseif generationType == 2
% Calculate the mean and save it to resultImagesBS
resultImagesBS(:,:,bs) = sum(weightedImages,3);
elseif generationType == 3
% Calculate the mean and save it to resultImagesBS
resultImagesBS(:,:,bs) = mean(selectedImages,3);
elseif generationType == 4
% Calculate the median and save it to resultImagesBS
resultImagesBS(:,:,bs) = median(selectedImages,3);
elseif generationType == 5
% Perform MPS simulation to generate result
cellSelImages = cell(1, size(selectedImages, 3));
selectedImages(isnan(selectedImages)) = nanValue;
for img = 1:size(selectedImages, 3)
cellSelImages{img} = cat(3, selectedImages(:, :, img), loc);
end
resultImages = g2s('-a','qs', ...
'-di',mask, ...
'-ti',cellSelImages, ...
'-ki',ki, ...
'-dt',mps.dataType, ...
'-k',mps.kValue, ...
'-n',mps.neighbours, ...
'-j',mps.processPwr);
resultImages = resultImages(:,:,1);
resultImages(resultImages==nanValue) = nan;
resultImagesBS(:,:,bs) = resultImages;
else
error('Generation type not defined!')
end
end
% Calculate the count of non-NaN values
availablePix(:,:,rowIndex) = sum(~isnan(selectedImages), 3);
% Compute variance per pixel
varianceBS(:,:,rowIndex) = var(resultImagesBS, 0, 3);
% Compute mean of each day to determine quantile
dayAvg = squeeze(mean(mean(resultImagesBS,'omitnan'),'omitnan'));
dayAvg = sortrows([dayAvg (1:ensemble)']);
%resultImagesMean = mean(resultImagesBS,3);
% Store all bs days sorted according to mean of each day
%imagesSynAll{rowIndex} = resultImagesBS;
imagesSynAll{rowIndex} = resultImagesBS(:,:,dayAvg(:,2));
bsMin = single(imagesSynAll{rowIndex}(:,:,1));
bsMax = single(imagesSynAll{rowIndex}(:,:,end));
bsMin(isnan(bsMin)) = -999;
bsMax(isnan(bsMax)) = -999;
if bsSaveAll == true
for bs = 1:ensemble
% Write the resulting image to a GeoTIFF file
outputBaseName = string(sortedDates(rowIndex,1)) + '_' + num2str(bs) + '_' + targetVarL(i) + '.tif';
fullDestinationFileName = fullfile(outputDirBootstrap, outputBaseName);
%disp([' Downlading image ' num2str(rowIndex) '/' num2str(size(sortedDates,1))])
if isempty(GeoRef)
%disp(' Georeferencing files missing! Unreferenced output...')
t = Tiff(fullDestinationFileName, 'w');
tagstruct.ImageLength = imgLength;
tagstruct.ImageWidth = imgWidth;
tagstruct.Compression = Tiff.Compression.None;
tagstruct.SampleFormat = Tiff.SampleFormat.IEEEFP;
tagstruct.Photometric = Tiff.Photometric.MinIsBlack;
tagstruct.BitsPerSample = 32;
tagstruct.SamplesPerPixel = 1;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
t.setTag(tagstruct);
t.write(single(imagesSynAll{rowIndex}(:,:,bs)));
t.close();
else
geotiffwrite(fullDestinationFileName,single(imagesSynAll{rowIndex}(:,:,bs)),GeoRef,'TiffTags',struct('Compression',Tiff.Compression.None));
end
end
end
% Save min, deterministic and max in netCDF
% Assign date
dateStr = convertStringsToChars(string(sortedDates{rowIndex, 1}));
yearStr = dateStr(1:4);
monthStr = dateStr(5:6);
dayStr = dateStr(7:8);
dateStrFormatted = [yearStr '-' monthStr '-' dayStr];
% Write data for each date as a new time step along the 'time' dimension
time = datenum(dateStrFormatted, 'yyyy-mm-dd');
netcdf.putVar(ncid_min, timeid, rowIndex - 1, 1, time - 719529); % 719529 = 1970-01-01
netcdf.putVar(ncid_det, timeid, rowIndex - 1, 1, time - 719529); % 719529 = 1970-01-01
netcdf.putVar(ncid_max, timeid, rowIndex - 1, 1, time - 719529); % 719529 = 1970-01-01
% Write data to the variable (hydrological map) for the current date
ncwrite(fullDestinationFileNameMin, targetVarL(i), bsMin', [1, 1, rowIndex]); % <-----------------------------------------------------------------------------------
ncwrite(fullDestinationFileNameDet, targetVarL(i), resultImages', [1, 1, rowIndex]);
ncwrite(fullDestinationFileNameMax, targetVarL(i), bsMax', [1, 1, rowIndex]); % <-----------------------------------------------------------------------------------
% Write the resulting image to a GeoTIFF file
%outputBaseName = string(sortedDates(rowIndex,1)) + '_bsMean.tif';
%fullDestinationFileName = fullfile(outputDir, var_low(i), outputBaseName);
%disp([' Downlading image ' num2str(rowIndex) '/' num2str(size(sortedDates,1))])
%if isempty(GeoRef)
%disp(' Georeferencing files missing! Unreferenced output...')
%t = Tiff(fullDestinationFileName, 'w');
%tagstruct.ImageLength = imgLength;
%tagstruct.ImageWidth = imgWidth;
%tagstruct.Compression = Tiff.Compression.None;
%tagstruct.SampleFormat = Tiff.SampleFormat.IEEEFP;
%tagstruct.Photometric = Tiff.Photometric.MinIsBlack;
%tagstruct.BitsPerSample = 32;
%tagstruct.SamplesPerPixel = 1;
%tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
%t.setTag(tagstruct);
%t.write(single(resultImagesMean));
%t.close();
%else
%geotiffwrite(fullDestinationFileName,single(resultImagesMean),GeoRef,'TiffTags',struct('Compression',Tiff.Compression.None));
%end
else
% Find the index of the current image in the Dates variable
[~, dateIndex] = ismember(sortedDates{rowIndex,2},learningDatesDate);
% Select the K best image from the Learning dataset and add it to selectedImages
for imageIndex = 1:nbImages %length(sortedDates{rowIndex,2})
if nbImages ~= length(sortedDates{rowIndex,2}) && imageIndex == 1
warning(['nbImages .ne. number of available analogues (' num2str(nbImages) ' vs ' num2str(length(sortedDates{rowIndex,2})) ')'])
end
if targetDim ~= 1
selectedImages(:,:,imageIndex) = learningData{dateIndex(imageIndex)};
else
selectedImages(imageIndex) = learningData(dateIndex(imageIndex));
end
end
% Calculate either the mode or the mean of the selected images
if generationType == 1
% Calculate the mode and save it to resultImages
if targetDim ~= 1
resultImages = mode(selectedImages,3);
else
resultImages = mode(selectedImages);
end
elseif generationType == 2
% Calculate the mean and save it to resultImages
sortedDates{rowIndex,3}(sortedDates{rowIndex,3} == 0) = 0.0001;
selectedDist = 1./sortedDates{rowIndex,3}(1:nbImages);
% Normalize the selectedDist values
normalizedWeights = selectedDist / sum(selectedDist);
% Perform element-wise multiplication with the weights
if targetDim ~= 1
weightedImages = bsxfun(@times, selectedImages, reshape(normalizedWeights, 1, 1, nbImages)); %length(sortedDates{rowIndex,2})
varMap(:,:,rowIndex) = var(selectedImages,normalizedWeights,3);
resultImages = sum(weightedImages,3);
else
weightedImages = selectedImages .* normalizedWeights;
varMap(rowIndex) = var(selectedImages,normalizedWeights);
resultImages = sum(weightedImages);
end
elseif generationType == 3
% Calculate the mean and save it to resultImages
if targetDim ~= 1
resultImages = mean(selectedImages,3);
else
resultImages = mean(selectedImages);
end
elseif generationType == 4
% Calculate the median and save it to resultImages
if targetDim ~= 1
resultImages = median(selectedImages,3);
else
resultImages = median(selectedImages);
end
elseif generationType == 5
% Perform MPS simulation to generate result
if targetDim ~= 1
cellSelImages = cell(1, size(selectedImages, 3));
selectedImages(isnan(selectedImages)) = nanValue;
for img = 1:size(selectedImages, 3)
cellSelImages{img} = cat(3, selectedImages(:, :, img), loc);
end
resultImages = g2s('-a','qs', ...
'-di',mask, ...
'-ti',cellSelImages, ...
'-ki',ki, ...
'-dt',mps.dataType, ...
'-k',mps.kValue, ...
'-n',mps.neighbours, ...
'-j',mps.processPwr);
resultImages = resultImages(:,:,1);
resultImages(resultImages==nanValue) = nan;
else
error('MPS not implemented for 1D data generation...')
end
else
error('Generation type not defined!')
end
if targetDim ~= 1
map(:,:,rowIndex) = resultImages;
% Calculate the count of non-NaN values
availablePix(:,:,rowIndex) = sum(~isnan(selectedImages), 3);
if outputType == 1
% Write the resulting image to a GeoTIFF file
outputBaseName = string(sortedDates(rowIndex,1)) + targetVarL(i) + '.tif';
fullDestinationFileName = fullfile(outputDir, targetVarL(i), outputBaseName);
%disp([' Downlading image ' num2str(rowIndex) '/' num2str(size(sortedDates,1))])
if isempty(GeoRef)
%disp(' Georeferencing files missing! Unreferenced output...')
t = Tiff(fullDestinationFileName, 'w');
tagstruct.ImageLength = imgLength;
tagstruct.ImageWidth = imgWidth;
tagstruct.Compression = Tiff.Compression.None;
tagstruct.SampleFormat = Tiff.SampleFormat.IEEEFP;
tagstruct.Photometric = Tiff.Photometric.MinIsBlack;
tagstruct.BitsPerSample = 32;
tagstruct.SamplesPerPixel = 1;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
t.setTag(tagstruct);
t.write(single(resultImages));
t.close();
else
geotiffwrite(fullDestinationFileName,single(resultImages),GeoRef,'TiffTags',struct('Compression',Tiff.Compression.None));
end
elseif outputType == 2
% Assign date
dateStr = convertStringsToChars(string(sortedDates{rowIndex, 1}));
yearStr = dateStr(1:4);
monthStr = dateStr(5:6);
dayStr = dateStr(7:8);
dateStrFormatted = [yearStr '-' monthStr '-' dayStr];
% Write data for each date as a new time step along the 'time' dimension
time = datenum(dateStrFormatted, 'yyyy-mm-dd');
netcdf.putVar(ncid, timeid, rowIndex - 1, 1, time - 719529); % 719529 = 1970-01-01
% Write data to the variable for the current date
resultImages(isnan(resultImages)) = -999;
ncwrite(fullDestinationFileName, targetVarL(i), single(resultImages)', [1, 1, rowIndex]);
else
error('Unknown output type. Choose 1 for GeoTiff or 2 for NetCDF...')
end
else
% For 1D data
map(rowIndex) = resultImages;
end
end
if optimisation == false
% Display computation progress
progress = (100*(rowIndex/size(sortedDates,1)));
fprintf(1,'\b\b\b\b%3.0f%%',progress);
end
end
if outputType == 2 && bootstrap == false && targetDim ~= 1
% Close the main netCDF file after the loop
netcdf.close(ncid);
elseif bootstrap == true
netcdf.close(ncid_min);
netcdf.close(ncid_det);
netcdf.close(ncid_max);
end
% Save text file
if targetDim == 1
% Write the resulting image to a GeoTIFF file
outputBaseName = strcat(targetVarL(i), '.txt');
fullDestinationFileName = fullfile(outputDir, outputBaseName);
Dates = cell2mat(sortedDates(:,1));
Discharge = map;
T = table(Dates, Discharge);
writetable(T,fullDestinationFileName,'Delimiter','\t');
end
% Data outputs
if i == 1
synImages.date = cell2mat(sortedDates(:,1));
fprintf('\n')
end
synImages.(targetVarL(i)) = map;
varDist = strcat(targetVarL(i), "_Distances");
minDist = single(nan(size(sortedDates,1),1));
for c = 1:size(sortedDates, 1)
values = sortedDates{c,3};
minDist(c) = min(values);
end
%synImages.(varDist) = minDist;
synImages.(varDist) = sortedDates(:,3);
varPix = strcat(targetVarL(i), "_AvailablePixels");
synImages.(varPix) = (availablePix./nbImages).*100;
varName = strcat(targetVarL(i), "_Variance");
synImages.(varName) = varMap;
if bootstrap == true
varBS = strcat(targetVarL(i), "_Bootstrap");
BSvar = strcat(varBS, "Variance");
synImages.(varBS) = imagesSynAll;
synImages.(BSvar) = varianceBS;
end
end
if optimisation == false && validation == true
%fprintf('\n')
disp('Saving synValidation.mat file...')
save(fullfile(outputDir,'synValidation.mat'),'synImages', '-v7.3','-nocompression');
end
end