-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathvov99_dd3d_1600x640_trainval_future.py
107 lines (98 loc) · 3.44 KB
/
vov99_dd3d_1600x640_trainval_future.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
_base_ = ['./r50_nuimg_704x256.py']
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
img_backbone = dict(
_delete_=True,
type='VoVNet',
spec_name='V-99-eSE',
out_features=['stage2', 'stage3', 'stage4', 'stage5'],
norm_eval=True,
frozen_stages=1,
with_cp=True
)
img_neck=dict(
_delete_=True,
type='FPN',
in_channels=[256, 512, 768, 1024],
out_channels=256,
num_outs=5
)
img_norm_cfg = dict(
_delete_=True,
mean=[103.530, 116.280, 123.675],
std=[57.375, 57.120, 58.395],
to_rgb=False
)
model = dict(
data_aug=dict(
img_color_aug=True,
img_norm_cfg=img_norm_cfg,
img_pad_cfg=dict(size_divisor=32)
),
img_backbone=img_backbone,
img_neck=img_neck,
pts_bbox_head=dict(
num_query=1600,
transformer=dict(
num_levels=5,
num_points=4,
num_frames=15
)
)
)
ida_aug_conf = {
'resize_lim': (0.94, 1.25),
'final_dim': (640, 1600),
'bot_pct_lim': (0.0, 0.0),
'rot_lim': (0.0, 0.0),
'H': 900, 'W': 1600,
'rand_flip': True,
}
train_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=False, color_type='color'),
dict(type='LoadMultiViewImageFromMultiSweepsFuture', prev_sweeps_num=7, next_sweeps_num=7),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='RandomTransformImage', ida_aug_conf=ida_aug_conf, training=True),
dict(type='GlobalRotScaleTransImage', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05]),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'], meta_keys=(
'filename', 'ori_shape', 'img_shape', 'pad_shape', 'lidar2img', 'img_timestamp'))
]
test_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=False, color_type='color'),
dict(type='LoadMultiViewImageFromMultiSweepsFuture', prev_sweeps_num=7, next_sweeps_num=7, test_mode=True),
dict(type='RandomTransformImage', ida_aug_conf=ida_aug_conf, training=False),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1600, 900),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(type='DefaultFormatBundle3D', class_names=class_names, with_label=False),
dict(type='Collect3D', keys=['img'], meta_keys=(
'filename', 'box_type_3d', 'ori_shape', 'img_shape', 'pad_shape',
'lidar2img', 'img_timestamp'))
])
]
data = dict(
train=dict(
ann_file=['data/nuscenes/nuscenes_infos_train_sweep.pkl',
'data/nuscenes/nuscenes_infos_val_sweep.pkl'],
pipeline=train_pipeline),
val=dict(
ann_file='data/nuscenes/nuscenes_infos_val_sweep.pkl', # use nuscenes_infos_test_sweep.pkl for submission
pipeline=test_pipeline),
test=dict(pipeline=test_pipeline)
)
# load pretrained weights
load_from = 'pretrain/dd3d_det_final.pth'
revise_keys = None