-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcentralized_experiments.py
62 lines (56 loc) · 3.19 KB
/
centralized_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from data import importer
from learning.predict import train_or_load_MLP, onehot
import learning.nn
import numpy as np
for dataset in ["citeseer", "cora", "pubmed"]:
classifier = learning.nn.LR
graph, features, labels, training, validation, test = importer.load(dataset, verbose=False)
num_classes = len(set(labels.values()))
num_features = len(list(features.values())[0])
onehot_labels = {u: onehot(labels[u], num_classes) for u in graph}
empty_label = onehot(None, num_classes)
training = set(training)
validation = set(validation)
training_labels = {u: onehot_labels[u] if u in training or u in validation else empty_label for u in graph}
#print(len(training), len(validation), len(test))
is_training = {u: False for u in graph}
for u in training:
is_training[u] = True
for u in validation:
is_training[u] = True
if classifier is not None:
pretrained = train_or_load_MLP(dataset, features, onehot_labels, num_classes, training, validation, test,
classifier=classifier)
for u, v in list(graph.edges()):
graph.add_edge(v, u)
test_labels = {u: labels[u] for u in test}
predictions = {u: pretrained(features[u]) for u in graph} if classifier is not None else {u: training_labels[u] for u in graph}
errors = {u: training_labels[u]-predictions[u] if is_training[u] else training_labels[u] for u in graph}
diffused_errors = errors
for round in range(200):
next_diffused_errors = {u: 0 for u in graph}
for u in graph:
if is_training[u]:
next_diffused_errors[u] = errors[u]
else:
for v in graph.neighbors(u):
next_diffused_errors[u] = next_diffused_errors[u] + diffused_errors[v] / (graph.out_degree(v) + 1)
next_diffused_errors[u] = next_diffused_errors[u] + diffused_errors[u] / (graph.out_degree(u) + 1)
diffused_errors = next_diffused_errors
#sigma = 0
#for u in training:
# sigma = sigma + np.sum(np.abs(diffused_errors[u])) / len(training)
#combined_predictions = {u: sigma*diffused_errors[u]/(np.sum(np.abs(diffused_errors[u]))+1.E-8) + predictions[u] if not is_training[u] else onehot_labels[u] for u in graph}
combined_predictions = {u: diffused_errors[u] + predictions[u] if not is_training[u] else onehot_labels[u] for u in graph}
diffused_predictions = combined_predictions
for round in range(200):
next_diffused_predictions = {u: 0 for u in graph}
for u in graph:
for v in graph.neighbors(u):
next_diffused_predictions[u] = next_diffused_predictions[u] + diffused_predictions[v] / ((graph.out_degree(v)+1)**0.5)
next_diffused_predictions[u] = next_diffused_predictions[u] + diffused_predictions[u] / ((graph.out_degree(u)+1)**0.5)
next_diffused_predictions[u] = next_diffused_predictions[u] / ((graph.out_degree(u)+1)**0.5) * 0.9 + 0.1*combined_predictions[u]
diffused_predictions = next_diffused_predictions
accuracy = sum(1. if np.argmax(diffused_predictions[u]) == label else 0 for u, label in test_labels.items()) / len(
test_labels)
print(dataset, accuracy)