-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
216 lines (183 loc) · 7.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2018 Giorgos Kordopatis-Zilos. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Tensorflow implementation of the DNN network used for Deep Metric Learning.
"""
from __future__ import print_function
import os
import tensorflow as tf
class DNN(object):
def __init__(self,
input_dimensions,
model_path,
hidden_layer_sizes=None,
load_model=False,
trainable=True,
learning_rate=1e-5,
weight_decay=5e-3,
gamma=1.0):
"""
Class initializer.
Args:
input_dimensions: dimension of the input vectors
hidden_layer_sizes: number of neurons of the DNN layers
model_path: path to store the trained model
load_model: load of the model weight from the model_path
trainable: indicator of whether it is training or evaluation phase
learning_rate: learning rate that weights are updated
weight_decay: regularization parameter for weight decay
gamma: margin parameter between positive-query and negative-query distance
"""
self.trainable = trainable
self.path = os.path.join(model_path, 'model')
self.input = tf.placeholder(tf.float32, shape=(None, input_dimensions), name='input')
self.embedding_dim = None
self.regularizer = tf.contrib.layers.l2_regularizer(scale=weight_decay) if trainable else None
if load_model:
self.output = self.load_model()
else:
self.output = self.build(hidden_layer_sizes)
self.saver = tf.train.Saver()
if trainable:
self.global_step = 1
with tf.name_scope('training'):
anchor, positive, negative = \
tf.unstack(tf.reshape(self.output, [-1, 3, self.output.get_shape().as_list()[1]]), 3, 1)
loss, error = self.triplet_loss(anchor, positive, negative, gamma)
reg_variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term = tf.contrib.layers.apply_regularization(self.regularizer, reg_variables)
with tf.name_scope('cost'):
cost = loss + reg_term
tf.summary.scalar('cost', cost)
train = tf.train.AdamOptimizer(learning_rate).minimize(cost)
self.train_op = [train, cost, error]
summary = tf.summary.merge_all()
self.test_op = [summary, cost, error]
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
init = tf.global_variables_initializer()
self.sess = tf.Session(config=config)
self.sess.run(init)
if trainable:
self.summary_writer = tf.summary.FileWriter(model_path, self.sess.graph)
def build(self, hidden_layer_sizes):
"""
Function that builds the DNN model.
Args:
hidden_layer_sizes: number of neurons of the DNN layers
trainable: indicator of whether it is training or evaluation phase
Returns:
net: output tensor of the constructed network
"""
net = self.input
for M in hidden_layer_sizes:
net = tf.contrib.layers.fully_connected(net, M,
activation_fn=tf.nn.tanh,
weights_regularizer=self.regularizer,
biases_regularizer=self.regularizer,
trainable=self.trainable)
with tf.name_scope('embeddings'):
net = tf.nn.l2_normalize(net, 1, 1e-15)
tf.summary.histogram('embeddings', net)
self.embedding_dim = M
return net
def load_model(self):
"""
Function that loads the weight of DNN layers from the saved model.
"""
previous_sizes = [size[1] for name, size in
tf.contrib.framework.list_variables(self.path)
if len(size) == 2 and 'Adam' not in name]
net = self.build(previous_sizes)
previous_variables = [var_name for var_name, _
in tf.contrib.framework.list_variables(self.path)]
restore_map = {variable.op.name: variable for variable in tf.global_variables()
if variable.op.name in previous_variables}
tf.contrib.framework.init_from_checkpoint(self.path, restore_map)
return net
def euclidean_distance(self, x, y):
"""
Euclidean distance calculation between each sample N of two matrices (NxM).
Args:
x: first feature matrix (NxM)
y: second feature matrix (NxM)
Returns:
their euclidean distance in sample N dimension (axis 1)
"""
with tf.name_scope('euclidean_distance'):
return tf.reduce_sum(tf.square(tf.subtract(x, y)), 1)
def triplet_loss(self, anchor, positive, negative, gamma):
"""
Triplet loss calculation.
Args:
anchor: anchor feature matrix (NxM)
positive: positive feature matrix (NxM)
negative: negative feature matrix (NxM)
gamma: margin parameter
Returns:
loss: total triplet loss
error: number of triplets with positive loss
"""
with tf.name_scope('triplet_loss'):
pos_dist = self.euclidean_distance(anchor, positive)
neg_dist = self.euclidean_distance(anchor, negative)
loss = tf.maximum(0., pos_dist - neg_dist + gamma)
error = tf.count_nonzero(loss, dtype=tf.float32) / \
tf.cast(tf.shape(anchor)[0], tf.float32) * tf.constant(100.0)
loss = tf.reduce_mean(loss)
tf.summary.scalar('loss', loss)
tf.summary.scalar('error', error)
return loss, error
def save(self):
"""
Function that saves the DNN model in the provided directory.
"""
print('save model...')
return self.saver.save(self.sess, self.path)
def train(self, X):
"""
Training of the network with the provided triplets.
Args:
X: input feature matrix (3*NxM)
Returns:
train: training argument
loss: total triplet loss
cost: total cost
error: number of triplets with positive loss
"""
return self.sess.run(self.train_op, feed_dict={self.input: X})
def test(self, X):
"""
Test of the network with the provided triplets.
Args:
X: input feature matrix (3*NxM)
Returns:
loss: total triplet loss
cost: total cost
error: number of triplets with positive loss
"""
summary, cost, error = self.sess.run(self.test_op, feed_dict={self.input: X})
self.summary_writer.add_summary(summary, self.global_step)
self.global_step += 1
return cost, error
def embeddings(self, X):
"""
Extraction of the feature embeddings of the input vectors.
Args:
X: input feature matrix (NxM)
Returns:
embeddings: embedding matrix (NxM)
"""
return self.sess.run(self.output, feed_dict={self.input: X})