-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
164 lines (151 loc) · 6.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from ugnn import tasks
from ugnn import architectures
from ugnn.utils import training
import torch
import numpy as np
import random
from datetime import datetime
import sys, math
# TODO: SMP architecture here: https://github.com/cvignac/SMP/blob/master/models/smp_layers.py
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device:".ljust(10) + str(device))
def universalNRI(*args, **kwargs):
return architectures.Universal(*args, **kwargs, nri=0)
for setting in [
"cora",
"citeseer",
"pubmed",
"triangle",
"square",
"longest",
"scoorediffusion",
"scorefixeddiffusion",
"propagation",
"fixedpropagation",
"degree",
]:
starting_time = datetime.now()
setting = setting+" overtrain"
#setting = "degree" # (cora | citeseer | pubmed | scoreentropy | scorediffusion | propagation | degree | triangle | square) [overtrain]
compare = [
architectures.MLP,
architectures.GCN,
architectures.APPNP,
architectures.GAT,
architectures.GCNII,
architectures.GCNNRI,
architectures.Universal,
]
def run(Model, task, splits, verbose=True, hidden=64, **kwargs):
from ugnn.utils import GraphConv
GraphConv._cached_edge_index = None
GraphConv._cached_adj_t = None
if hidden is None:
hidden = int(math.log2(task.feats))
hidden = hidden ** int((hidden - 1) // 2)
print(f"Automatically detecting hidden dimensions: {hidden}")
bestacc = None
bestvaliation = float("inf")
for retry in range(1):
#task.l1 = 1 if architectures.Universal.__name__ is Model.__name__ else 0
#splits["train"].l1 = task.l1
model = Model(task.feats, task.classes, hidden=hidden).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
tracker_epoch = None # list()
tracker_train = None # list()
tracker_valid = None # list()
tracker_test = None # list()
acc, validation = training(
model=model,
optimizer=optimizer,
verbose=model.__class__.__name__,
#patience=5000 if architectures.Universal.__name__ is Model.__name__ else 100,
#clip=10 if architectures.Universal.__name__ is Model.__name__ else None,
tracker_train=tracker_train,
tracker_valid=tracker_valid,
tracker_test=tracker_test,
tracker_epoch=tracker_epoch,
**splits,
**kwargs,
)
if tracker_epoch is not None:
from matplotlib import pyplot as plt
plt.plot(tracker_epoch, tracker_train, label="Train")
plt.plot(tracker_epoch, tracker_valid, label="Valid")
plt.plot(tracker_epoch, tracker_test, label="Test")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.show()
if bestvaliation > validation:
bestvaliation = validation
bestacc = acc
if verbose:
print()
return bestacc
# make comparisons
results = [list() for _ in compare]
print("Setting:".ljust(10) + setting)
print(" ".join([architecture.__name__.ljust(8) for architecture in compare]))
for _ in range(5):
if "diffusion" in setting:
task = tasks.DiffusionTask(
nodes=100, max_density=0.1, graphs=500, alpha=0.1 if "fixed" in setting else random.uniform(0, 0.5)
).to(device)
elif "propagation" in setting:
task = tasks.PropagationTask(
nodes=100, max_density=0.1, graphs=500, alpha=0.1 if "fixed" in setting else random.uniform(0, 0.5)
).to(device)
elif "longest" in setting:
task = tasks.DiameterTask(nodes=100, max_density=0.1, graphs=500, distribution_name="Longest shortest path").to(device)
elif "degree" in setting:
task = tasks.DegreeTask(nodes=100, max_density=0.1, graphs=500, distribution_name="Degree").to(device)
elif "entropy" in setting:
task = tasks.EntropyTask(nodes=100, graphs=500).to(device)
elif "triangle" in setting:
task = tasks.TrianglesTask(nodes=100, max_density=0.1, graphs=500, distribution_name="Count triangles").to(
device
)
elif "square" in setting:
task = tasks.SquareCliqueTask(nodes=20, max_density=0.5, graphs=500, distribution_name="Is in a 4-clique").to(
device
)
elif "cora" in setting:
task = tasks.PlanetoidTask("Cora", device)
elif "citeseer" in setting:
task = tasks.PlanetoidTask("Citeseer", device)
elif "pubmed" in setting:
task = tasks.PlanetoidTask("Pubmed", device)
else:
raise Exception("invalid setting")
# from matplotlib import pyplot as plt
# plt.hist(task.labels.cpu().numpy(), bins=task.classes)
# plt.show()
splits = task.overtrain() if "overtrain" in setting else task.split()
for architecture, result in zip(compare, results):
result.append(float(run(architecture, task, splits)))
print("\r".ljust(80), end="")
print("\r".ljust(80), end="")
print("\r" + " ".join([f"{result[-1]:.5f}".ljust(8) for result in results]))
def printall():
print(" ".join([architecture.__name__.ljust(8) for architecture in compare]))
print(" ".join([f"{np.mean(result):.3f}".ljust(8) for result in results]))
print("Standard deviations")
print(" ".join([f"{np.std(result):.3f}".ljust(8) for result in results]))
from scipy.stats import rankdata
ranks = rankdata(np.array(results), axis=0).T
if "score" not in setting:
ranks = len(compare) + 1 - ranks
ranks = ranks.mean(axis=0)
print("Nemenyi ranks")
print(" ".join([f"{rank:.1f}".ljust(8) for rank in ranks]))
print("Latex")
print(" & ".join([f"{np.mean(result):.3f} ({rank:.1f})" for result, rank in zip(results, ranks)]))
print("\n==== Summary ====")
printall()
prev_sysout = sys.stdout
with open(
f'results/{setting} [{str(starting_time).replace(":", "-")}].txt', "w"
) as sys.stdout:
printall()
sys.stdout = prev_sysout