-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmx_wheel+_v1.2.3.py
861 lines (586 loc) · 26.6 KB
/
gmx_wheel+_v1.2.3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import subprocess
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
pd.options.mode.chained_assignment = None # default='warn'
from operator import itemgetter
import seaborn as sns
from scipy.stats import norm
from scipy.optimize import curve_fit
import matplotlib.pyplot as mpl
from matplotlib.patches import Ellipse, Polygon
import math
from sklearn.metrics import r2_score
import statistics
### Parse command line arguments ###
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("-m", "--mode", default="full", help="process = prosess the trajectory for analysis (output = center.xtc), analysis = analyse processed trajectory (center.xtc) to calculate angle distrubution and sidechain pertusion (output = results.txt), wheel = generate helical wheel projection based on results file (default = results.txt, can be changed using -r), analysis+wheel = do analysis + wheel projection, full = do process + analysis + wheel projection, triplicate = combine results based on three replica simulation, difference = estimates the shifts in the angles based on two sets of results (specified using -r and -r2)")
parser.add_argument("-f", "--trajectory_name", default="traj.xtc", help="Name of the simulation trajectory")
parser.add_argument("-s", "--tpr_name", default='topol.tpr', help="Name of production simluation tpr-file")
parser.add_argument("-b", "--time_start", default=0, type=int, help="Time for start of analysis in ps / time for once the peptide has reached full insertion into the bilayer in ps")
parser.add_argument("-e", "--end_time", default=500000, type=int, help="Time for end of analysis / end of simultion in ps")
parser.add_argument("-hs", "--helix_start", default=1, type=int, help="First residue used to find the central helical axis. Make sure this resiude is fully part of the helix!")
parser.add_argument("-he", "--helix_end", default=14, type=int, help="Last residue used to find the central helical axis. Make sure this resiude is fully part of the helix!")
parser.add_argument("-r", "--results_input", default='results.txt', help="Input file for wheel projection (only relevant if -m wheel or triplicate)")
parser.add_argument("-r2", "--results_input2", default='results2.txt', help="Input file 2 for wheel projection (only relevant if -m triplicate)")
parser.add_argument("-r3", "--results_input3", default='results3.txt', help="Input file 3 for wheel projection (only relevant if -m triplicate)")
parser.add_argument("-ps", "--projection_start", default="all", help="First resiude shown in the wheel projection")
parser.add_argument("-pe", "--projection_end", default="all", help="Last resiude shown in the wheel projection")
parser.add_argument("-cutoff", "--cutoff", default=5, type=int, help="Cutoff value in percentage used to determine when changes in the sidechain length are highlighted in difference mode")
args = vars(parser.parse_args())
### Set up parameters ###
mode=args["mode"]
trajectory_name=args["trajectory_name"]
tpr_name=args["tpr_name"]
time_start=args["time_start"]
end_time=args["end_time"]
helix_start=args["helix_start"]
helix_end=args["helix_end"]
results_input=args["results_input"]
results_input2=args["results_input2"]
results_input3=args["results_input3"]
projection_start=args["projection_start"]
projection_end=args["projection_end"]
cutoff=args["cutoff"]
### Functions ###
def process_trajectory(trajectory_name, tpr_name, time_start, end_time):
f= open("process_trajectory.sh","w+")
f.write(
"#!/usr/bin/bash"+'\n'
##Arguments
"trajectory_name=${1}"+'\n'
"tpr_name=${2}"+'\n'
"time_start=${3}"+'\n'
"end_time=${4}"+'\n'
##Center trajectory on peptide
"gmx trjconv -f ${1} -s ${2} -o center.xtc -center -pbc mol -ur compact -b ${3} -e ${4} <<EOF"+'\n'
"Protein"+'\n'
"System"+'\n'
"EOF"+'\n')
f.close()
os.chmod("process_trajectory.sh", 0o0777)
subprocess.run(["./process_trajectory.sh", str(trajectory_name), str(tpr_name), str(time_start), str(end_time)])
os.remove("process_trajectory.sh")
def get_angle_distrubution(sequence_length, tpr_name, time_start, helix_start, helix_end, end_time):
#Corret for glycine
sequence = get_sequence()
sequence_length_corrected = sequence_length - len(sequence[sequence.Residue == 'G'])
f= open("get_angle_distrubution.sh","w+")
f.write(
'#!/usr/bin/bash'+'\n'
##Argument
'sequence_length=${1}'+'\n'
'tpr_name=${2}'+'\n'
'time_start=${3}'+'\n'
'helix_start=${4}'+'\n'
'helix_end=${5}'+'\n'
'end_time=${6}'+'\n'
'sequence_length_corrected=${7}'+'\n'
##Create index for angle determination
'echo "del10-30" >> index.txt'+'\n'
'echo "3 & r${4}-$[${4}+3]" >> index.txt'+'\n'
'echo "3 & r$[${5}-3]-${5}" >> index.txt'+'\n'
'for i in $(seq 1 $sequence_length)'+'\n'
'do'+'\n'
' echo "9 & r$i" >> index.txt'+'\n'
'done'+'\n'
'echo "del0-9" >> index.txt'+'\n'
'echo "" >> index.txt'+'\n'
'echo "q" >> index.txt'+'\n'
'gmx make_ndx -f ${2} -o wheel.ndx < index.txt'+'\n'
'rm index.txt'+'\n'
##Calculate angle distrubutions for full trajectory
'for i in $(seq 1 $sequence_length_corrected)'+'\n'
'do'+'\n'
' echo "cog of group 0 plus cog of group 1 plus cog of group $[$i+1]" >> gangle_input.txt'+'\n'
'done'+'\n'
'gmx gangle -f center.xtc -s ${2} -n wheel.ndx -g1 plane -g2 z -oh anglehis.xvg -oav -xvg none < gangle_input.txt'+'\n'
##Calculate angles for rotated helix
'time=$[${6}-${3}]'+'\n'
'gmx trjconv -f center.xtc -s ${2} -fit rotxy -dump ${3} -o center_rotxy_start.gro <<EOF'+'\n'
'3'+'\n'
'0'+'\n'
'EOF'+'\n'
'gmx trjconv -f center.xtc -s ${2} -fit rotxy -dump $[${6}-($time/2)] -o center_rotxy_mid.gro <<EOF'+'\n'
'3'+'\n'
'0'+'\n'
'EOF'+'\n'
'gmx trjconv -f center.xtc -s ${2} -fit rotxy -dump ${6} -o center_rotxy_end.gro <<EOF'+'\n'
'3'+'\n'
'0'+'\n'
'EOF'+'\n'
'gmx editconf -f center_rotxy_start.gro -rotate 90 0 0 -o center_rotxy_90_start.gro'+'\n'
'gmx editconf -f center_rotxy_mid.gro -rotate 90 0 0 -o center_rotxy_90_mid.gro'+'\n'
'gmx editconf -f center_rotxy_end.gro -rotate 90 0 0 -o center_rotxy_90_end.gro'+'\n'
'gmx gangle -f center_rotxy_90_start.gro -s center_rotxy_90_start.gro -n wheel.ndx -g1 plane -g2 z -oav angle_rot_start.xvg -xvg none < gangle_input.txt'+'\n'
'gmx gangle -f center_rotxy_90_mid.gro -s center_rotxy_90_mid.gro -n wheel.ndx -g1 plane -g2 z -oav angle_rot_mid.xvg -xvg none < gangle_input.txt'+'\n'
'gmx gangle -f center_rotxy_90_end.gro -s center_rotxy_90_end.gro -n wheel.ndx -g1 plane -g2 z -oav angle_rot_end.xvg -xvg none < gangle_input.txt'+'\n'
'rm gangle_input.txt'+'\n'
##Determine N-terminal orientation
'gmx make_ndx -f ${2} -o terminals.ndx <<EOF'+'\n'
'del0-40'+'\n'
'r1'+'\n'
'r$sequence_length'+'\n'
'q'+'\n'
'EOF'+'\n'
'gmx traj -f center_rotxy_start.gro -s ${2} -n terminals.ndx -x -xvg none -com -ox N-terminal_position.xvg <<<0'+'\n'
'gmx traj -f center_rotxy_start.gro -s ${2} -n terminals.ndx -x -xvg none -com -ox C-terminal_position.xvg <<<1'+'\n'
##Determine insertion leaflet
'gmx density -f center_rotxy_start.gro -s ${2} -d z -xvg none -o density_system.xvg <<<0'+'\n')
f.close()
os.chmod("get_angle_distrubution.sh", 0o0777)
subprocess.run(["./get_angle_distrubution.sh", str(sequence_length), str(tpr_name), str(time_start), str(helix_start), str(helix_end), str(end_time), str(sequence_length_corrected)])
os.remove("get_angle_distrubution.sh")
def COG_distance(sequence_length, tpr_name):
f= open("COG_distance.sh","w+")
f.write(
"#!/usr/bin/bash"+'\n'
##Arguments
'sequence_length=${1}'+'\n'
'tpr_name=${2}'+'\n'
'echo "del10-30" >> index_distance.txt'+'\n'
'for i in $(seq 1 $sequence_length)'+'\n'
'do'+'\n'
' echo "3 & r$i" >> index_distance.txt'+'\n'
' echo "9 & r$i" >> index_distance.txt'+'\n'
'done'+'\n'
'echo "del1-9" >> index_distance.txt'+'\n'
'echo "q" >> index_distance.txt'+'\n'
'gmx make_ndx -f ${2} -o index_distance.ndx < index_distance.txt'+'\n'
'rm index_distance.txt'+'\n'
'for i in $(seq 1 2 $[$sequence_length * 2])'+'\n'
'do'+'\n'
' echo "cog of group $i plus cog of group $[$i+1]" >> distance_input.txt'+'\n'
'done'+'\n'
'gmx distance -f center.xtc -s ${2} -n index_distance.ndx -oav sidechain_pertusion.xvg -xvg none < distance_input.txt'+'\n'
'rm distance_input.txt'+'\n')
f.close()
os.chmod("COG_distance.sh", 0o0777)
subprocess.run(["./COG_distance.sh", str(sequence_length), str(tpr_name)])
os.remove("COG_distance.sh")
def pairdist(tpr_name):
f= open("pairdist.sh","w+")
f.write(
"#!/usr/bin/bash"+'\n'
"tpr_name=${1}"+'\n'
"gmx pairdist -f center.xtc -s ${1} -type max -o pairdist.xvg -xvg none -refgrouping res -selgrouping res <<EOF"+'\n'
"3"+'\n'
"9"+'\n'
"EOF"+'\n')
f.close()
os.chmod("pairdist.sh", 0o0777)
subprocess.run(["./pairdist.sh", str(tpr_name)])
os.remove("pairdist.sh")
def _1gaussian(x, amp1,cen1,sigma1):
return amp1*(1/(sigma1*(np.sqrt(2*np.pi))))*(np.exp((-1.0/2.0)*(((x-cen1)/sigma1)**2)))
def fit_angle(input_file, col):
data = pd.read_csv(input_file, delim_whitespace=True, header=None,)
x_array = np.array(data[0])
y_array = np.array(data[col])
popt_gauss, pcov_gauss = curve_fit(_1gaussian, x_array, y_array, p0=[0, 90, 40])
fit_sigma = popt_gauss[2]
fit_cen = popt_gauss[1]
y_pred = _1gaussian(x_array, popt_gauss[0], popt_gauss[1], popt_gauss[2])
r2 = r2_score(y_array, y_pred)
i=0
while r2 < 0.8:
popt_gauss, pcov_gauss = curve_fit(_1gaussian, x_array, y_array, p0=[0, i, 20])
fit_sigma = popt_gauss[2]
fit_cen = popt_gauss[1]
y_pred = _1gaussian(x_array, popt_gauss[0], popt_gauss[1], popt_gauss[2])
r2 = r2_score(y_array, y_pred)
i = i + 10
if i > 180:
fit_cen = 0
fit_sigma = 0
r2 = 'NA'
return (fit_cen, 2*fit_sigma, r2)
break
else:
return (fit_cen, 2*fit_sigma, r2)
def get_sequence():
with open('sequence.dat', 'r') as file:
sequence_raw = file.read().rstrip()
sequence = []
for res in sequence_raw:
sequence.append(res)
sequence = pd.DataFrame(sequence, columns=['Residue'])
return sequence
def get_sequence_length():
return len(get_sequence())
def calc_max_distance():
pairdist = pd.read_csv("pairdist.xvg", delim_whitespace=True, header=None)
pairdist_selection_list = []
sequence = get_sequence()
sequence_length = get_sequence_length()
sequence_length_minus_G = sequence_length - len(sequence[sequence.Residue == 'G'])
pairdist_count = - sequence_length
i=0
for _ in range(1, sequence_length_minus_G+1):
if sequence.iat[i,0] != 'G':
pairdist_count = pairdist_count + sequence_length + 1
pairdist_selection_list.append(pairdist_count)
i=i + 1
else:
x=i
glycine_count = 0
while sequence.iat[x,0] == 'G':
glycine_count = glycine_count+1
x=x+1
else:
pairdist_count = pairdist_count + sequence_length + 1 + glycine_count
pairdist_selection_list.append(pairdist_count)
i=i + glycine_count
pairdist = pairdist[pairdist_selection_list]
pairdist_mean = pairdist.mean()
pairdist_mean = pd.DataFrame(pairdist_mean, columns = ['Sidechain length'])
pairdist_mean = pairdist_mean.reset_index(drop=True)
return pairdist_mean
def calc_COG_distance():
distance = pd.read_csv("sidechain_pertusion.xvg", delim_whitespace=True, header=None)
distance_mean = distance.mean()
distance_mean = distance_mean.drop(axis=0, index = 0)
distance_mean = pd.DataFrame(distance_mean, columns = ['Sidechain length'])
distance_mean = distance_mean.reset_index(drop=True)
return distance_mean
def calc_angle():
angle_dis = []
sequence = get_sequence()
sequence_length = get_sequence_length()
sequence_length = sequence_length - len(sequence[sequence.Residue == 'G'])
for res in range(1, sequence_length+1):
angle_dis.append(fit_angle("anglehis.xvg", res))
angle_dis = pd.DataFrame(angle_dis, columns = ['Angle centre', 'Angle spread', 'Fit R^2'])
return angle_dis
def calc_angle_rot():
angle_rot_start = pd.read_csv("angle_rot_start.xvg", delim_whitespace=True, header=None)
angle_rot_start = angle_rot_start.transpose()
angle_rot_start = angle_rot_start.drop(axis=0, index = 0,)
angle_rot_start.columns = ['Rotated angle start']
angle_rot_start = angle_rot_start.reset_index(drop=True)
angle_rot_mid = pd.read_csv("angle_rot_mid.xvg", delim_whitespace=True, header=None)
angle_rot_mid = angle_rot_mid.transpose()
angle_rot_mid = angle_rot_mid.drop(axis=0, index = 0,)
angle_rot_mid.columns = ['Rotated angle mid']
angle_rot_mid = angle_rot_mid.reset_index(drop=True)
angle_rot_end = pd.read_csv("angle_rot_end.xvg", delim_whitespace=True, header=None)
angle_rot_end = angle_rot_end.transpose()
angle_rot_end = angle_rot_end.drop(axis=0, index = 0,)
angle_rot_end.columns = ['Rotated angle end']
angle_rot_end = angle_rot_end.reset_index(drop=True)
angle_rot = pd.concat([angle_rot_start, angle_rot_mid, angle_rot_end], axis=1)
angle_rot = angle_rot.mean(axis=1)
angle_rot = pd.DataFrame(angle_rot, columns = ['Rotated angle'])
return angle_rot
def get_360_angle():
## X-orientation ##
N_terminal_position = pd.read_csv("N-terminal_position.xvg", delim_whitespace=True, header=None)
N_terminal_position = N_terminal_position.iat[0, 1]
C_terminal_position = pd.read_csv("C-terminal_position.xvg", delim_whitespace=True, header=None)
C_terminal_position = C_terminal_position.iat[0, 1]
### Leaflet insertion ###
density = pd.read_csv('density_system.xvg', delim_whitespace=True, header=None)
density_length = density[0].max(axis=0)
index_density_min = np.argmin(density[1])
density_min = density.iloc[index_density_min]
density_min = density_min[0]
angle_dis = calc_angle()
angle_rot = calc_angle_rot()
angle_full = []
if N_terminal_position > C_terminal_position and density_min < (density_length/2): #works
for ind in angle_dis.index:
if angle_rot['Rotated angle'][ind] < 90:
angle_full.append(360 - angle_dis['Angle centre'][ind] - 180)
else:
angle_full.append(angle_dis['Angle centre'][ind] +180)
#print('A')
elif N_terminal_position < C_terminal_position and density_min < (density_length/2): #works
for ind in angle_dis.index:
if angle_rot['Rotated angle'][ind] > 90:
angle_full.append(360 - angle_dis['Angle centre'][ind] - 180)
else:
angle_full.append(angle_dis['Angle centre'][ind] + 180)
#print('B')
elif N_terminal_position > C_terminal_position and density_min > (density_length/2): #works
for ind in angle_dis.index:
if angle_rot['Rotated angle'][ind] < 90:
angle_full.append(360 - angle_dis['Angle centre'][ind])
else:
angle_full.append(angle_dis['Angle centre'][ind])
#print('C')
else:
for ind in angle_dis.index:
if angle_rot['Rotated angle'][ind] > 90:
angle_full.append(360 - angle_dis['Angle centre'][ind])
else:
angle_full.append(angle_dis['Angle centre'][ind])
#print('D')
angle_full = pd.DataFrame(angle_full, columns = ['Angle 360'])
return angle_full
def calc_results():
sequence = get_sequence()
sequence_length = get_sequence_length()
angle_dis = calc_angle()
angle_rot = calc_angle_rot()
angle_full = get_360_angle()
distance_max = calc_max_distance()
results = []
x=0
for i in range(0, sequence_length):
if sequence.iat[i,0] == 'G':
results.append((sequence.iat[i,0], 0, 0, 0, 0, 0, 0))
x = x
else:
results.append((sequence.iat[i,0], angle_dis.iat[x,0], angle_dis.iat[x,1], angle_dis.iat[x,2], angle_rot.iat[x,0], angle_full.iat[x,0], distance_max.iat[x,0]))
x = x+1
results = pd.DataFrame(results, columns = ['Residue', "Angle centre", "Angle spread", "Fit R^2", "Rotated angle", "Angle 360", "Sidechain length"])
results.to_csv('results.txt', index=False, sep=' ')
return results
def get_data(results_input, projection_start, projection_end):
if projection_end == 'all' or projection_start == 'all':
data = pd.read_csv(results_input, sep=" ")
return data
else:
seqeunce_length = get_sequence_length()
residue_drop_list =[]
for i in range(1,int(projection_start)):
residue_drop_list.append(i)
for i in range(int(projection_end)+1, seqeunce_length+1):
residue_drop_list.append(i)
data = pd.read_csv(results_input, sep=" ", skiprows=residue_drop_list, header=0)
return data
def gen_wheel(results_input, projection_start, projection_end, cutoff):
data = get_data(results_input, projection_start, projection_end)
#Make graph basic
ax = plt.subplot(111, polar=True)
angles = np.deg2rad(data["Angle 360"])
heights = data["Sidechain length"]
widths = np.deg2rad(abs(data["Angle spread"]))
residues = data["Residue"]
sequence_length = get_sequence_length()
#Colouring
if mode == 'difference':
colors = []
for i in range(0, sequence_length):
if data.at[i,"Angle spread"] > 0:
colors.append('blue')
else:
colors.append('red')
hatches = []
for x in range(0, sequence_length):
if data.at[x,"% difference"] > cutoff:
hatches.append('...')
elif data.at[x,"% difference"] < (-1*cutoff):
hatches.append('xxx')
else:
hatches.append('')
else:
label_color_dict = {'H': '#00FFFF',
'I': '#b4b4b4',
'L': '#b4b4b4',
'K': '#00FFFF',
'M': '#b4b4b4',
'F': '#b4b4b4',
'T': '#00FF00',
'W': '#b4b4b4',
'V': '#b4b4b4',
'R': '#00FFFF',
'C': '#FFFF00',
'Q': '#00FF00',
'G': '#FFFF00',
'P': '#FFFF00',
'Y': '#b4b4b4',
'A': '#b4b4b4',
'D': '#FF0000',
'N': '#00FF00',
'E': '#FF0000',
'S': '#00FF00',}
colors = itemgetter(*residues)(label_color_dict)
hatches = []
for i in range(0, len(residues)):
hatches.append('')
## Draw bars
bars = ax.bar(
x=angles,
height=(heights),
width=widths,
bottom=0.23,
linewidth=2,
edgecolor="white",
color=colors,
alpha=0.5,
hatch=hatches
)
plt.axis('off')
## Add labels
residue_labels = []
if projection_start == 'all' or projection_end == 'all':
x = 0
for i in residues:
x = x + 1
residue_labels.append("{}{}".format(x, i))
else:
x = int(projection_start) -1
for i in residues:
x = x + 1
residue_labels.append("{}{}".format(x, i))
labelPadding = 0.15
for bar, angle, height, label in zip(bars,angles, heights, residue_labels):
ax.text(
x=angle,
y=bar.get_height() + labelPadding,
s=label,
va='center',
ha='center')
if mode == 'difference':
print('Red = clockwise shift')
print('Blue = counterclockwise shift')
average_shift = round(data['Angle spread'].mean(),2)
if average_shift < 0:
print(f'The helical rotation is on average shifted {abs(average_shift)} degrees clockwise')
else:
print(f'The helical rotation is on average shifted {abs(average_shift)} degrees counterclockwise')
plt.show()
def average_results(results_concat, col_name):
data = results_concat[col_name]
data = data.mean(axis=1)
data = pd.DataFrame(data, columns = [col_name])
data = data.reset_index(drop=True)
return(data)
def combine_results(results_input,results_input2,results_input3):
sequence_length = get_sequence_length()
results1 = get_data(results_input, 1, sequence_length)
results2 = get_data(results_input2, 1, sequence_length)
results3 = get_data(results_input3, 1, sequence_length)
results_concat = pd.concat([results1, results2, results3], axis=1)
return(results_concat)
def triplicate_analysis(results_input,results_input2,results_input3):
results_concat = combine_results(results_input,results_input2,results_input3)
sequence = get_sequence()
sequence_length = get_sequence_length()
mean_sidechain_length = average_results(results_concat, 'Sidechain length')
mean_spread = average_results(results_concat, 'Angle spread')
mean_spread = mean_spread.divide(2)
angle = results_concat['Angle 360']
angle_diff = []
angle_centre = []
for i in range(0,sequence_length):
x1 = 180 - abs(abs(angle.iloc[i,0] - angle.iloc[i,1]) - 180)
x2 = 180 - abs(abs(angle.iloc[i,1] - angle.iloc[i,2]) - 180)
x3 = 180 - abs(abs(angle.iloc[i,0] - angle.iloc[i,2]) - 180)
diff = max(x1,x2,x3)
angle_diff.append(diff)
y = [angle.iloc[i,0], angle.iloc[i,1], angle.iloc[i,2]]
if y[0] < 90 and y[1] > 270 and y[2] > 270:
y = [y[0]+360, y[1], y[2]]
elif y[0] > 270 and y[1] < 90 and y[2] > 270:
y = [y[0], y[1]+360, y[2]]
elif y[0] > 270 and y[1] > 270 and y[2] < 90:
y = [y[0], y[1], y[2]+360]
elif y[0] < 90 and y[1] < 90 and y[2] > 270:
y = [y[0]+360, y[1]+360, y[2]]
elif y[0] > 270 and y[1] < 90 and y[2] < 90:
y = [y[0], y[1]+360, y[2]+360]
elif y[0] < 90 and y[1] > 270 and y[2] < 90:
y = [y[0]+360, y[1], y[2]+360]
else:
y= [y[0], y[1], y[2]]
centre = statistics.mean([max(y),min(y)])
if centre > 360:
angle_centre.append(centre-360)
else:
angle_centre.append(centre)
angle_diff = pd.DataFrame(angle_diff)
angle_centre = pd.DataFrame(angle_centre, columns = ['Angle 360'])
spread_concat = pd.concat([mean_spread, angle_diff], axis=1)
spread_sum = pd.DataFrame.sum(spread_concat, axis=1)
spread_sum = pd.DataFrame(spread_sum, columns = ['Angle spread'])
results_combined = pd.concat([sequence, angle_centre, spread_sum, mean_sidechain_length], axis=1)
results_combined.to_csv('results_combined.txt', index=False, sep=' ')
def analyse_difference(results_input, results_input2):
results1 = get_data(results_input, projection_start, projection_end)
results2 = get_data(results_input2, projection_start, projection_end)
results_concat = pd.concat([results1, results2], axis=1)
sequence_length = get_sequence_length()
#Sequence comparison
sequence = results_concat['Residue']
sequence_compared = []
for i in range(0, sequence_length):
if sequence.iloc[i,0] == sequence.iloc[i,1]:
sequence_compared.append(sequence.iloc[i,0])
else:
a = sequence.iloc[i,0]
b = sequence.iloc[i,1]
x = '%s/%s' % (a, b)
sequence_compared.append(x)
sequence_compared = pd.DataFrame(sequence_compared, columns = ['Residue'])
#Sidechain length comparison
sidechain_length = results_concat['Sidechain length']
sidechain_length.columns = ['Sidechain length original', 'Sidechain length']
sidechain_length['Difference'] = sidechain_length['Sidechain length'] - sidechain_length['Sidechain length original']
sidechain_length['% difference'] = sidechain_length['Difference'] / sidechain_length['Sidechain length original'] * 100
#Angle comparison
angle = results_concat['Angle 360']
angle_diff = []
angle_centre = []
for i in range(0,sequence_length):
diff = 180 - abs(abs(angle.iloc[i,0] - angle.iloc[i,1]) - 180)
if angle.iloc[i,1] < angle.iloc[i,0] and abs(angle.iloc[i,0] - angle.iloc[i,1]) < 270:
diff = diff * -1
elif angle.iloc[i,1] > angle.iloc[i,0] and abs(angle.iloc[i,0] - angle.iloc[i,1]) > 270:
diff = diff * -1
elif angle.iloc[i,1] < angle.iloc[i,0] and abs(angle.iloc[i,0] - angle.iloc[i,1]) > 270:
diff = diff
else:
diff = diff
angle_diff.append(diff)
y = [angle.iloc[i,0], angle.iloc[i,1]]
if y[0] < 90 and y[1] > 270:
y = [y[0]+360, y[1]]
elif y[0] > 270 and y[1] < 90:
y = [y[0], y[1]+360]
else:
y= [y[0], y[1]]
centre = statistics.mean([y[0],y[1]])
if centre > 360:
angle_centre.append(centre-360)
else:
angle_centre.append(centre)
angle_diff = pd.DataFrame(angle_diff, columns = ['Angle spread'])
angle_centre = pd.DataFrame(angle_centre, columns = ['Angle 360'])
#Combine results
results_difference = pd.concat([sequence_compared,angle_centre, angle_diff, sidechain_length], axis = 1)
results_difference.to_csv('results_difference.txt', index=False, sep=' ')
def main(mode, trajectory_name, tpr_name, time_start, end_time, helix_start, helix_end, results_input, results_input2, results_input3, projection_start, projection_end, cutoff):
if mode == "process":
process_trajectory(trajectory_name, tpr_name, time_start, end_time)
elif mode == "analysis":
sequence_length = get_sequence_length()
get_angle_distrubution(sequence_length, tpr_name, time_start, helix_start, helix_end, end_time)
pairdist(tpr_name)
calc_results()
elif mode == "wheel":
gen_wheel(results_input, projection_start, projection_end, cutoff)
elif mode == "analysis+wheel":
sequence_length = get_sequence_length()
get_angle_distrubution(sequence_length, tpr_name, time_start, helix_start, helix_end, end_time)
pairdist(tpr_name)
calc_results()
gen_wheel(results_input, projection_start, projection_end, cutoff)
elif mode == "triplicate":
triplicate_analysis(results_input,results_input2,results_input3)
gen_wheel('results_combined.txt', projection_start, projection_end, cutoff)
elif mode == "difference":
analyse_difference(results_input, results_input2)
gen_wheel('results_difference.txt', projection_start, projection_end, cutoff)
else:
process_trajectory(trajectory_name, tpr_name, time_start, end_time)
sequence_length = get_sequence_length()
get_angle_distrubution(sequence_length, tpr_name, time_start, helix_start, helix_end, end_time)
pairdist(tpr_name)
calc_results()
gen_wheel(results_input, projection_start, projection_end, cutoff)
if __name__ == '__main__':
main(mode, trajectory_name, tpr_name, time_start, end_time, helix_start, helix_end, results_input, results_input2, results_input3, projection_start, projection_end, cutoff)