-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnt_xcov.m
55 lines (48 loc) · 1.35 KB
/
nt_xcov.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function [c,tw]=nt_xcov(x,y,shifts,w);
%[c,tw]=nt_xcov(x,y,shifts,w) - cross-covariance of X and time-shifted Y
%
%
% c: cross-covariance matrix
% tw: total weight
%
% x,y: data to cross correlate
% shifts: array of time shifts (must be non-negative)
% w: weights
%
% This function calculates, for each pair of columns (Xi,Yj) of X and Y, the
% scalar products between Xi and time-shifted versions of Yj.
% Shifts are taken from array SHIFTS.
%
% The weights are applied to X.
%
% X can be 1D, 2D or 3D. W is 1D (if X is 1D or 2D) or 2D (if X is 3D).
%
% Output is a 2D matrix with dimensions ncols(X)*(ncols(Y)*nshifts).
%
% NoiseTools
if nargin<4; w=[]; end;
if nargin<3||isempty(shifts); shifts=0; end;
if ~isempty(w) && size(x,1)~=size(w,1); error('X and W should have same nrows'); end
if size(x,3)~=size(y,3); error('X and Y should have same npages'); end
if ~isempty(w) && size(x,3)~=size(w,3); error('X and W should have same npages'); end
shifts=shifts(:);
nshifts=numel(shifts);
[mx,nx,ox]=size(x);
[my,ny,oy]=size(y);
c=zeros(nx,ny*nshifts);
if ~isempty(w)
x=nt_fold(nt_vecmult(nt_unfold(x),nt_unfold(w)),mx);
end
% cross covariance
for k=1:ox
yy=nt_multishift(y(:,:,k),shifts);
xx=x(1:size(yy,1),:,k);
c=c+xx'*yy;
end
if isempty(w)
% tw=ox*ny*size(yy,1);
tw=ox*size(yy,1);
else
w=w(1:size(yy,1),:,:);
tw=sum(w(:));
end