diff --git a/README.md b/README.md index 3a06a89..1d5926c 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,7 @@ | **Documentation** | **Build Status** | **Julia** | **Testing** | -|:-----------------:|:----------------:|:---------:|:---------| +|:-----------------:|:----------------:|:---------:|:-----------:| | [![docs][docs-img]][docs-url] | [![CI][ci-img]][ci-url] [![codecov][cc-img]][cc-url] | [![Julia][julia-img]][julia-url] [![Code Style: Blue][style-img]][style-url] | [![Aqua QA][aqua-img]][aqua-url] [![JET][jet-img]][jet-url] | [docs-img]: https://img.shields.io/badge/docs-stable-blue.svg @@ -41,7 +41,7 @@ RecurrentLayers.jl extends [Flux.jl](https://github.com/FluxML/Flux.jl) recurren ## Features 🚀 -Currently available layers and work in progress in the short term: +Currently available cells: - [x] Minimal gated unit (MGU) [arxiv](https://arxiv.org/abs/1603.09420) - [x] Light gated recurrent unit (LiGRU) [arxiv](https://arxiv.org/abs/1803.10225) - [x] Independently recurrent neural networks (IndRNN) [arxiv](https://arxiv.org/abs/1803.04831) @@ -53,7 +53,10 @@ Currently available layers and work in progress in the short term: - [x] Structurally constrained recurrent neural network (SCRN) [arxiv](https://arxiv.org/pdf/1412.7753) - [x] Peephole long short term memory (PeepholeLSTM) [pub](https://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf) - [x] FastRNN and FastGRNN [arxiv](https://arxiv.org/pdf/1901.02358) - - [ ] Minimal gated recurrent unit (minGRU) and minimal long short term memory (minLSTM) [arxiv](https://arxiv.org/abs/2410.01201) + +Currently available wrappers: + - [x] Stacked RNNs + - [x] FastSlow RNNs [arxiv](https://arxiv.org/abs/1705.08639) ## Installation 💻 diff --git a/docs/src/index.md b/docs/src/index.md index 3f50518..bb28833 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -8,17 +8,22 @@ RecurrentLayers.jl extends [Flux.jl](https://github.com/FluxML/Flux.jl) recurren ## Implemented layers - - Minimal gated unit as `MGUCell` [arxiv](https://arxiv.org/abs/1603.09420) - - Light gated recurrent unit as `LiGRUCell` [arxiv](https://arxiv.org/abs/1803.10225) - - Independently recurrent neural networks as `IndRNNCell` [arxiv](https://arxiv.org/abs/1803.04831) - - Recurrent addictive networks as `RANCell` [arxiv](https://arxiv.org/abs/1705.07393) - - Recurrent highway network as `RHNCell` [arixv](https://arxiv.org/pdf/1607.03474) - - Light recurrent unit as `LightRUCell` [pub](https://www.mdpi.com/2079-9292/13/16/3204) - - Neural architecture search unit `NASCell` [arxiv](https://arxiv.org/abs/1611.01578) - - Evolving recurrent neural networks as `MUT1Cell`, `MUT2Cell`, `MUT3Cell` [pub](https://proceedings.mlr.press/v37/jozefowicz15.pdf) - - Structurally constrained recurrent neural network as `SCRNCell` [arxiv](https://arxiv.org/pdf/1412.7753) - - Peephole long short term memory as `PeepholeLSTMCell` [pub](https://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf) - - `FastRNNCell` and `FastGRNNCell` [arxiv](https://arxiv.org/pdf/1901.02358) +Cells and layers: + - [x] Minimal gated unit (MGU) [arxiv](https://arxiv.org/abs/1603.09420) + - [x] Light gated recurrent unit (LiGRU) [arxiv](https://arxiv.org/abs/1803.10225) + - [x] Independently recurrent neural networks (IndRNN) [arxiv](https://arxiv.org/abs/1803.04831) + - [x] Recurrent addictive networks (RAN) [arxiv](https://arxiv.org/abs/1705.07393) + - [x] Recurrent highway network (RHN) [arixv](https://arxiv.org/pdf/1607.03474) + - [x] Light recurrent unit (LightRU) [pub](https://www.mdpi.com/2079-9292/13/16/3204) + - [x] Neural architecture search unit (NAS) [arxiv](https://arxiv.org/abs/1611.01578) + - [x] Evolving recurrent neural networks (MUT1/2/3) [pub](https://proceedings.mlr.press/v37/jozefowicz15.pdf) + - [x] Structurally constrained recurrent neural network (SCRN) [arxiv](https://arxiv.org/pdf/1412.7753) + - [x] Peephole long short term memory (PeepholeLSTM) [pub](https://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf) + - [x] FastRNN and FastGRNN [arxiv](https://arxiv.org/pdf/1901.02358) + +Wrappers: + - [x] Stacked RNNs + - [x] FastSlow RNNs [arxiv](https://arxiv.org/abs/1705.08639) ## Contributing