You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello
Could you please help me with the folowing error: DeepBGC failed with ValueError: Grouper for 'sequence_id' not 1-dimensional
Thank you very much!!!
Commands:
deepbgc prepare --output-tsv cat_saxi_clusters_refs.prepared.tsv cat_saxi_clusters_refs_genomic.fasta
deepbgc train --model deepbgc.json --output SaxiDetector.pkl --config PFAM2VEC ./pfam2vec.csv Saxi_Positives.incluster.pfam.tsv Fake_negatives.pfam.tsv
ERROR 29/07 18:14:08 DeepBGC failed with ValueError: Grouper for 'sequence_id' not 1-dimensional
cat_saxi_clusters_refs_genomic.fasta contains six nucleotide sequences from a BGC of six species
Based on the GeneSwap_Negatives.pfam.tsv file, I edited the cat_saxi_clusters_refs.prepared.tsv to have the same columns as the GeneSwap_Negatives.pfam.tsv file, including the 'sequence_id', which consist of six BGC identifiers in the positive file and 'NEG_FAKE_CLUSTER' in the edited Fake_negatives.pfam.tsv
Both files have these columns:
sequence_id|contig_id|protein_id|gene_start|gene_end|gene_strand|pfam_id|domain_start|domain_end|bitscore|in_cluster
Saxi_Positives.incluster.pfam.tsv with in_cluster = 1 and six sequence_id to group by during training
Fake_negatives.pfam.tsv with in_cluster = 0 and one sequence_id
I got the deepbgc.json and pfam2vec.csv from github
Complete error message:
Traceback (most recent call last):
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/main.py", line 113, in main
run(argv)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/main.py", line 102, in run
args.func.run(**args_dict)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/command/train.py", line 60, in run
train_samples, train_y = util.read_samples(inputs, target)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/util.py", line 561, in read_samples
samples = [sample for sample_id, sample in domains.groupby('sequence_id')]
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/generic.py", line 7632, in groupby
observed=observed, **kwargs)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2110, in groupby
return klass(obj, by, **kwds)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 360, in init
mutated=self.mutated)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/grouper.py", line 602, in _get_grouper
if not isinstance(gpr, Grouping) else gpr)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/grouper.py", line 322, in init
"Grouper for '{}' not 1-dimensional".format(t))
ValueError: Grouper for 'sequence_id' not 1-dimensional
ERROR 29/07 18:14:08 ================================================================================
ERROR 29/07 18:14:08 DeepBGC failed with ValueError: Grouper for 'sequence_id' not 1-dimensional
ERROR 29/07 18:14:08 ================================================================================
The text was updated successfully, but these errors were encountered:
Hello
Could you please help me with the folowing error: DeepBGC failed with ValueError: Grouper for 'sequence_id' not 1-dimensional
Thank you very much!!!
Commands:
cat_saxi_clusters_refs_genomic.fasta contains six nucleotide sequences from a BGC of six species
Based on the GeneSwap_Negatives.pfam.tsv file, I edited the cat_saxi_clusters_refs.prepared.tsv to have the same columns as the GeneSwap_Negatives.pfam.tsv file, including the 'sequence_id', which consist of six BGC identifiers in the positive file and 'NEG_FAKE_CLUSTER' in the edited Fake_negatives.pfam.tsv
Both files have these columns:
sequence_id|contig_id|protein_id|gene_start|gene_end|gene_strand|pfam_id|domain_start|domain_end|bitscore|in_cluster
Saxi_Positives.incluster.pfam.tsv with in_cluster = 1 and six sequence_id to group by during training
Fake_negatives.pfam.tsv with in_cluster = 0 and one sequence_id
I got the deepbgc.json and pfam2vec.csv from github
Complete error message:
Traceback (most recent call last):
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/main.py", line 113, in main
run(argv)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/main.py", line 102, in run
args.func.run(**args_dict)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/command/train.py", line 60, in run
train_samples, train_y = util.read_samples(inputs, target)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/deepbgc/util.py", line 561, in read_samples
samples = [sample for sample_id, sample in domains.groupby('sequence_id')]
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/generic.py", line 7632, in groupby
observed=observed, **kwargs)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2110, in groupby
return klass(obj, by, **kwds)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 360, in init
mutated=self.mutated)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/grouper.py", line 602, in _get_grouper
if not isinstance(gpr, Grouping) else gpr)
File "/home/marlaux/anaconda3/envs/deepbgc/lib/python3.7/site-packages/pandas/core/groupby/grouper.py", line 322, in init
"Grouper for '{}' not 1-dimensional".format(t))
ValueError: Grouper for 'sequence_id' not 1-dimensional
ERROR 29/07 18:14:08 ================================================================================
ERROR 29/07 18:14:08 DeepBGC failed with ValueError: Grouper for 'sequence_id' not 1-dimensional
ERROR 29/07 18:14:08 ================================================================================
The text was updated successfully, but these errors were encountered: