-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgem_eval_ompl.py
152 lines (144 loc) · 6.61 KB
/
gem_eval_ompl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from torch.autograd import Variable
import math
import time
from plan_general_ompl import *
def eval_tasks(mpNet, test_data, folder, filename, IsInCollision, normalize_func = lambda x:x, unnormalize_func=lambda x: x,
time_flag=False, local_reorder_setting=False):
obc, obs, paths, path_lengths = test_data
obs = obs.astype(np.float32)
obs = torch.from_numpy(obs)
fes_env = [] # list of list
valid_env = []
time_env = []
time_total = []
dir_name = folder+'planning_res_path'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
dir_name = folder+'planning_res_path_local_reorder'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
for i in range(len(paths)):
time_path = []
fes_path = [] # 1 for feasible, 0 for not feasible
valid_path = [] # if the feasibility is valid or not
# save paths to different files, indicated by i
# feasible paths for each env
for j in range(len(paths[0])):
time0 = time.time()
time_norm = 0.
fp = 0 # indicator for feasibility
print ("step: i="+str(i)+" j="+str(j))
p1_ind=0
p2_ind=0
p_ind=0
if path_lengths[i][j]==0:
# invalid, feasible = 0, and path count = 0
fp = 0
valid_path.append(0)
if path_lengths[i][j]>0:
fp = 0
valid_path.append(1)
path = [torch.from_numpy(paths[i][j][0]).type(torch.FloatTensor),\
torch.from_numpy(paths[i][j][path_lengths[i][j]-1]).type(torch.FloatTensor)]
step_sz = DEFAULT_STEP
#MAX_NEURAL_REPLAN = 11
MAX_NEURAL_REPLAN = 1001
for t in range(MAX_NEURAL_REPLAN):
# adaptive step size on replanning attempts
# 1.2, 0.5, 0.1 are for simple env
# 0.04, 0.03, 0.02 are for home env
local_reorder = False
if (t == 0):
# initial plan
max_length = 2400
elif (t == 2):
#step_sz = 1.2
step_sz = 0.04
elif (t == 3):
#step_sz = 0.5
step_sz = 0.03
elif (t > 3):
#step_sz = 0.1
step_sz = 0.02
if (t > 0 and t < 0.30 * MAX_NEURAL_REPLAN):
if local_reorder_setting:
max_length = 3000
else:
max_length = 5000
else:
# dense local plan with nearest-neighbor reorder
if local_reorder_setting:
max_length = 5000
local_reorder = True # turn on for local reordering
else:
max_length = 8000
if time_flag:
path, time_norm = neural_replan(mpNet, path, obc[i], obs[i], IsInCollision, \
normalize_func, unnormalize_func, t==0, step_sz=step_sz, \
max_length=max_length, local_reorder=local_reorder, time_flag=time_flag)
else:
path = neural_replan(mpNet, path, obc[i], obs[i], IsInCollision, \
normalize_func, unnormalize_func, t==0, step_sz=step_sz, \
max_length=max_length, local_reorder=local_reorder, time_flag=time_flag)
print('after neural replan %d:' % (t))
#print(path)
#path_vis = [p.numpy() for p in path]
#path_vis = np.array(path_vis)
#np.savetxt('path_%d_replan_%d.txt' % (j, t), path_vis, fmt='%f')
# for several paths at the beginning, don't do this
if t > (MAX_NEURAL_REPLAN * 2.0):
path = dist_lvc(path, obc[i], IsInCollision, step_sz=step_sz)
#path_vis = [p.numpy() for p in path]
#path_vis = np.array(path_vis)
#np.savetxt('path_%d_replan_%d_reordered.txt' % (j, t), path_vis, fmt='%f')
path = lvc(path, obc[i], IsInCollision, step_sz=step_sz)
#path_vis = [p.numpy() for p in path]
#path_vis = np.array(path_vis)
#np.savetxt('path_%d_replan_%d_lvc.txt' % (j, t), path_vis, fmt='%f')
#print('after lvc:')
#print(path)
if feasibility_check(path, obc[i], IsInCollision, step_sz=0.01):
fp = 1
print('feasible, ok!')
break
if fp:
# only for successful paths
time1 = time.time() - time0
time1 -= time_norm
time_path.append(time1)
print('test time: %f' % (time1))
# write the path
#print('planned path:')
#print(path)
path = [p.numpy() for p in path]
path = np.array(path)
if fp:
#pass
if local_reorder_setting:
np.savetxt(folder+'planning_res_path_local_reorder/path_%d_fes.txt' % (j), path, fmt='%f')
else:
np.savetxt(folder+'planning_res_path/path_%d_fes.txt' % (j), path, fmt='%f')
else:
#pass
if local_reorder_setting:
np.savetxt(folder+'planning_res_path_local_reorder/path_%d_nfes.txt' % (j), path, fmt='%f')
else:
np.savetxt(folder+'planning_res_path/path_%d_nfes.txt' % (j), path, fmt='%f')
fes_path.append(fp)
print('env %d accuracy up to now: %f' % (i, (float(np.sum(fes_path))/ np.sum(valid_path))))
time_env.append(time_path)
time_total += time_path
print('average test time up to now: %f' % (np.mean(time_total)))
fes_env.append(fes_path)
valid_env.append(valid_path)
print('accuracy up to now: %f' % (float(np.sum(fes_env)) / np.sum(valid_env)))
if filename is not None:
pickle.dump(time_env, open(filename, "wb" ))
#print(fp/tp)
return np.array(fes_env), np.array(valid_env)