-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
170 lines (129 loc) · 5.38 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from flask import Flask, render_template, Response, request
from prediction_model import *
from Scheduler import *
import os
import cv2
import numpy as np
import time
# Test results (FPS):
# Normal webcam: 50-100
# Haar face detection: 8-12
# Face + emotion detection with haar: 4-6
# Face + emotion detection (haar) with threaded timer optimization: 8-10 (kinda incorrect prediction, did not fix)
# Face detetction with DNN: 18-20
# Face + emotion detection with DNN: 7
# Face _ emotion detection (DNN) with threaded timer optimization: 15-19 (timer = 0.3s, calculated avg = 16 fps)
# Fixed the incorrect prediction issue, still the naive algorithm with haar cascade had better real-time predictions (as in the notebook)
global face_roi, status, fd_model, counter, prev_frame_time, new_frame_time, emotion_detect
face_roi = np.zeros((3, 3, 3))
status = 'neutral'
counter = 0
prev_frame_time = 0
new_frame_time = 0
emotion_detect = 0 # boolean
modelFile = "saved_model/res10_300x300_ssd_iter_140000.caffemodel"
configFile = "saved_model/deploy.prototxt.txt"
fd_model = cv2.dnn.readNetFromCaffe(configFile, modelFile)
images = 'images'
if os.path.isdir(images):
for file in os.listdir(images):
os.remove(os.path.join(images, file))
else:
os.mkdir(images)
app = Flask(__name__, template_folder='./templates')
camera = cv2.VideoCapture(0)
def predict_emotion(save_images = 0):
global status, face_roi, counter, emotion_detect
if not emotion_detect:
return
img_size = 224
classes = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
if save_images:
cv2.imwrite(os.path.join(images, 'face_' + str(counter) + '.png'), face_roi)
counter += 1
try:
final_image = cv2.resize(face_roi, (img_size, img_size))
final_image = np.expand_dims(final_image, axis = 0)
Predictions = model6.predict(final_image)
class_num = np.argmax(Predictions) # **Provides the index of the max argument
status = classes[class_num]
except:
pass
print("Emotion: ", status)
def detect_face(frame):
global fd_model, face_roi
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
fd_model.setInput(blob)
detections = fd_model.forward()
confidence = detections[0, 0, 0, 2] # atmost 1 face detected
if confidence < 0.5:
return frame
box = detections[0, 0, 0, 3:7] * np.array([w, h, w, h])
(x, y, x1, y1) = box.astype("int")
try:
# dim = (h, w)
face_roi = frame[y:y1, x:x1]
cv2.rectangle(frame, (x, y), (x1, y1), (0, 0, 255), 2)
(h, w) = frame.shape[:2]
r = 480 / float(h)
dim = ( int(w * r), 480)
frame=cv2.resize(frame,dim)
except Exception as e:
raise
return frame
rt = Scheduler(0.3, predict_emotion, 0) # Call predict every x seconds
# generator to yield frames from webcam
def gen_frames(): # generate frame by frame from camera
global prev_frame_time, new_frame_time, emotion_detect, status, face_roi
while True:
success, frame = camera.read()
if success:
# Calculating the fps
new_frame_time = time.time()
# try:
# fps = 1/(new_frame_time-prev_frame_time)
# prev_frame_time = new_frame_time
# fps = int(fps)
# print("FPS: ", fps)
# except ZeroDivisionError as e:
# pass
frame = cv2.flip(frame,1)
frame = detect_face(frame)
if(emotion_detect):
# pass
# predict_emotion()
font = cv2.FONT_HERSHEY_SIMPLEX
x1, y1, w1, h1 = 0, 0, 175, 75
cv2.rectangle(frame, (x1, x1), (x1 + w1, y1 + h1), (0, 0, 0), -1)
cv2.putText(frame, status, (x1 + int(w1 / 10), y1 + int(h1 / 2)), font, 0.7, (0, 0, 255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255), 2, cv2.LINE_4)
try:
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # HTTP format for images
except Exception as e:
pass
else:
pass
@app.route('/')
def index():
return render_template('index.html')
@app.route('/video_feed')
def video_feed():
return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/requests',methods=['POST','GET'])
def user_input():
if request.method == 'POST':
if request.form.get('detect_emotion') == 'Detect Emotion On/Off':
global emotion_detect
emotion_detect =not emotion_detect
# if emotion_detect:
# print("Now detecting emotions")
return render_template('index.html')
if __name__ == '__main__':
app.run()
camera.release()
cv2.destroyAllWindows()