-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_agw.py
245 lines (203 loc) · 8.46 KB
/
model_agw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
from torch.nn import init
from resnet import resnet50, resnet18
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm)
return out
class Non_local(nn.Module):
def __init__(self, in_channels, reduc_ratio=2):
super(Non_local, self).__init__()
self.in_channels = in_channels
self.inter_channels = reduc_ratio//reduc_ratio
self.g = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1,
padding=0),
)
self.W = nn.Sequential(
nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.in_channels),
)
nn.init.constant_(self.W[1].weight, 0.0)
nn.init.constant_(self.W[1].bias, 0.0)
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
'''
:param x: (b, c, t, h, w)
:return:
'''
batch_size = x.size(0)
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
f = torch.matmul(theta_x, phi_x)
N = f.size(-1)
# f_div_C = torch.nn.functional.softmax(f, dim=-1)
f_div_C = f / N
y = torch.matmul(f_div_C, g_x)
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
W_y = self.W(y)
z = W_y + x
return z
# #####################################################################
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
init.zeros_(m.bias.data)
elif classname.find('BatchNorm1d') != -1:
init.normal_(m.weight.data, 1.0, 0.01)
init.zeros_(m.bias.data)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
init.normal_(m.weight.data, 0, 0.001)
if m.bias:
init.zeros_(m.bias.data)
class visible_module(nn.Module):
def __init__(self, arch='resnet50'):
super(visible_module, self).__init__()
model_v = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.visible = model_v
def forward(self, x):
x = self.visible.conv1(x)
x = self.visible.bn1(x)
x = self.visible.relu(x)
x = self.visible.maxpool(x)
return x
class thermal_module(nn.Module):
def __init__(self, arch='resnet50'):
super(thermal_module, self).__init__()
model_t = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.thermal = model_t
def forward(self, x):
x = self.thermal.conv1(x)
x = self.thermal.bn1(x)
x = self.thermal.relu(x)
x = self.thermal.maxpool(x)
return x
class base_resnet(nn.Module):
def __init__(self, arch='resnet50'):
super(base_resnet, self).__init__()
model_base = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
model_base.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.base = model_base
def forward(self, x):
x = self.base.layer1(x)
x = self.base.layer2(x)
x = self.base.layer3(x)
x = self.base.layer4(x)
return x
class embed_net(nn.Module):
def __init__(self, class_num, no_local= 'on', gm_pool = 'on', arch='resnet50'):
super(embed_net, self).__init__()
self.thermal_module = thermal_module(arch=arch)
self.visible_module = visible_module(arch=arch)
self.base_resnet = base_resnet(arch=arch)
self.non_local = no_local
if self.non_local =='on':
layers=[3, 4, 6, 3]
non_layers=[0,2,3,0]
self.NL_1 = nn.ModuleList(
[Non_local(256) for i in range(non_layers[0])])
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
self.NL_2 = nn.ModuleList(
[Non_local(512) for i in range(non_layers[1])])
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
self.NL_3 = nn.ModuleList(
[Non_local(1024) for i in range(non_layers[2])])
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
self.NL_4 = nn.ModuleList(
[Non_local(2048) for i in range(non_layers[3])])
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
pool_dim = 2048
self.l2norm = Normalize(2)
self.bottleneck = nn.BatchNorm1d(pool_dim)
self.bottleneck.bias.requires_grad_(False) # no shift
self.classifier = nn.Linear(pool_dim, class_num, bias=False)
self.bottleneck.apply(weights_init_kaiming)
self.classifier.apply(weights_init_classifier)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.gm_pool = gm_pool
def forward(self, x1, x2, modal=0):
if modal == 0:
x1 = self.visible_module(x1)
x2 = self.thermal_module(x2)
x = torch.cat((x1, x2), 0)
elif modal == 1:
x = self.visible_module(x1)
elif modal == 2:
x = self.thermal_module(x2)
# shared block
if self.non_local == 'on':
NL1_counter = 0
if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1]
for i in range(len(self.base_resnet.base.layer1)):
x = self.base_resnet.base.layer1[i](x)
if i == self.NL_1_idx[NL1_counter]:
_, C, H, W = x.shape
x = self.NL_1[NL1_counter](x)
NL1_counter += 1
# Layer 2
NL2_counter = 0
if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1]
for i in range(len(self.base_resnet.base.layer2)):
x = self.base_resnet.base.layer2[i](x)
if i == self.NL_2_idx[NL2_counter]:
_, C, H, W = x.shape
x = self.NL_2[NL2_counter](x)
NL2_counter += 1
# Layer 3
NL3_counter = 0
if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1]
for i in range(len(self.base_resnet.base.layer3)):
x = self.base_resnet.base.layer3[i](x)
if i == self.NL_3_idx[NL3_counter]:
_, C, H, W = x.shape
x = self.NL_3[NL3_counter](x)
NL3_counter += 1
# Layer 4
NL4_counter = 0
if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1]
for i in range(len(self.base_resnet.base.layer4)):
x = self.base_resnet.base.layer4[i](x)
if i == self.NL_4_idx[NL4_counter]:
_, C, H, W = x.shape
x = self.NL_4[NL4_counter](x)
NL4_counter += 1
else:
x = self.base_resnet(x)
if self.gm_pool == 'on':
b, c, h, w = x.shape
x = x.view(b, c, -1)
p = 3.0
x_pool = (torch.mean(x**p, dim=-1) + 1e-12)**(1/p)
else:
x_pool = self.avgpool(x)
x_pool = x_pool.view(x_pool.size(0), x_pool.size(1))
feat = self.bottleneck(x_pool)
if self.training:
return x_pool, self.classifier(feat)
else:
return self.l2norm(x_pool), self.l2norm(feat)