-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialContrastiveNormalization.lua
36 lines (30 loc) · 1.41 KB
/
SpatialContrastiveNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
local SpatialContrastiveNormalization, parent = torch.class('nn.SpatialContrastiveNormalization','nn.Module')
function SpatialContrastiveNormalization:__init(nInputPlane, kernel, threshold, thresval)
parent.__init(self)
-- get args
self.nInputPlane = nInputPlane or 1
self.kernel = kernel or torch.Tensor(9,9):fill(1)
self.threshold = threshold or 1e-4
self.thresval = thresval or threshold or 1e-4
local kdim = self.kernel:nDimension()
-- check args
if kdim ~= 2 and kdim ~= 1 then
error('<SpatialContrastiveNormalization> averaging kernel must be 2D or 1D')
end
if (self.kernel:size(1) % 2) == 0 or (kdim == 2 and (self.kernel:size(2) % 2) == 0) then
error('<SpatialContrastiveNormalization> averaging kernel must have ODD dimensions')
end
-- instantiate sub+div normalization
self.normalizer = nn.Sequential()
self.normalizer:add(nn.SpatialSubtractiveNormalization(self.nInputPlane, self.kernel))
self.normalizer:add(nn.SpatialDivisiveNormalization(self.nInputPlane, self.kernel,
self.threshold, self.thresval))
end
function SpatialContrastiveNormalization:updateOutput(input)
self.output = self.normalizer:forward(input)
return self.output
end
function SpatialContrastiveNormalization:updateGradInput(input, gradOutput)
self.gradInput = self.normalizer:backward(input, gradOutput)
return self.gradInput
end