diff --git a/src/core/MOM_PressureForce_FV.F90 b/src/core/MOM_PressureForce_FV.F90 index 64df200f31..5fb3ade634 100644 --- a/src/core/MOM_PressureForce_FV.F90 +++ b/src/core/MOM_PressureForce_FV.F90 @@ -319,7 +319,7 @@ subroutine PressureForce_FV_nonBouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_ SSH(i,j) = (za(i,j) - alpha_ref*p(i,j,1)) * I_gEarth - G%Z_ref & - max(-G%bathyT(i,j)-G%Z_ref, 0.0) enddo ; enddo - call calc_SAL(SSH, e_sal, G, CS%SAL_CSp) + call calc_SAL(SSH, e_sal, G, CS%SAL_CSp, tmp_scale=US%Z_to_m) if ((CS%tides_answer_date>20230630) .or. (.not.GV%semi_Boussinesq) .or. (.not.CS%tides)) then !$OMP parallel do default(shared) @@ -587,7 +587,7 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm SSH(i,j) = SSH(i,j) + h(i,j,k)*GV%H_to_Z enddo ; enddo enddo - call calc_SAL(SSH, e_sal, G, CS%SAL_CSp) + call calc_SAL(SSH, e_sal, G, CS%SAL_CSp, tmp_scale=US%Z_to_m) !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 e(i,j,nz+1) = e(i,j,nz+1) - e_sal(i,j) @@ -618,7 +618,7 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm SSH(i,j) = SSH(i,j) + h(i,j,k)*GV%H_to_Z enddo ; enddo enddo - call calc_SAL(SSH, e_sal, G, CS%SAL_CSp) + call calc_SAL(SSH, e_sal, G, CS%SAL_CSp, tmp_scale=US%Z_to_m) else !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 diff --git a/src/core/MOM_PressureForce_Montgomery.F90 b/src/core/MOM_PressureForce_Montgomery.F90 index 3de713c801..6d982bc7e3 100644 --- a/src/core/MOM_PressureForce_Montgomery.F90 +++ b/src/core/MOM_PressureForce_Montgomery.F90 @@ -216,7 +216,7 @@ subroutine PressureForce_Mont_nonBouss(h, tv, PFu, PFv, G, GV, US, CS, p_atm, pb enddo ; enddo ; enddo endif - call calc_SAL(SSH, e_sal, G, CS%SAL_CSp) + call calc_SAL(SSH, e_sal, G, CS%SAL_CSp, tmp_scale=US%Z_to_m) !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 geopot_bot(i,j) = geopot_bot(i,j) - GV%g_Earth*e_sal(i,j) @@ -481,7 +481,7 @@ subroutine PressureForce_Mont_Bouss(h, tv, PFu, PFv, G, GV, US, CS, p_atm, pbce, SSH(i,j) = SSH(i,j) + h(i,j,k)*GV%H_to_Z enddo ; enddo enddo - call calc_SAL(SSH, e_sal, G, CS%SAL_CSp) + call calc_SAL(SSH, e_sal, G, CS%SAL_CSp, tmp_scale=US%Z_to_m) !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 e(i,j,nz+1) = e(i,j,nz+1) - e_sal(i,j) diff --git a/src/parameterizations/lateral/MOM_self_attr_load.F90 b/src/parameterizations/lateral/MOM_self_attr_load.F90 index 20d239eb53..7f7215c9d8 100644 --- a/src/parameterizations/lateral/MOM_self_attr_load.F90 +++ b/src/parameterizations/lateral/MOM_self_attr_load.F90 @@ -42,19 +42,21 @@ module MOM_self_attr_load !! be changed into bottom pressure anomaly in the future. Note that the SAL calculation applies to all motions !! across the spectrum. Tidal-specific methods that assume periodicity, i.e. iterative and read-in SAL, are !! stored in MOM_tidal_forcing module. -subroutine calc_SAL(eta, eta_sal, G, CS) +subroutine calc_SAL(eta, eta_sal, G, CS, tmp_scale) type(ocean_grid_type), intent(in) :: G !< The ocean's grid structure. real, dimension(SZI_(G),SZJ_(G)), intent(in) :: eta !< The sea surface height anomaly from !! a time-mean geoid [Z ~> m]. real, dimension(SZI_(G),SZJ_(G)), intent(out) :: eta_sal !< The sea surface height anomaly from !! self-attraction and loading [Z ~> m]. type(SAL_CS), intent(inout) :: CS !< The control structure returned by a previous call to SAL_init. + real, optional, intent(in) :: tmp_scale !< A rescaling factor to temporarily convert eta + !! to MKS units in reproducing sumes [m Z-1 ~> 1] ! Local variables integer :: n, m, l integer :: Isq, Ieq, Jsq, Jeq integer :: i, j - real :: eta_prop + real :: eta_prop ! The scalar constant of proportionality between eta and eta_sal [nondim] call cpu_clock_begin(id_clock_SAL) @@ -69,7 +71,7 @@ subroutine calc_SAL(eta, eta_sal, G, CS) ! use the spherical harmonics method elseif (CS%use_sal_sht) then - call spherical_harmonics_forward(G, CS%sht, eta, CS%Snm_Re, CS%Snm_Im, CS%sal_sht_Nd) + call spherical_harmonics_forward(G, CS%sht, eta, CS%Snm_Re, CS%Snm_Im, CS%sal_sht_Nd, tmp_scale=tmp_scale) ! Multiply scaling factors to each mode do m = 0,CS%sal_sht_Nd @@ -119,8 +121,8 @@ subroutine calc_love_scaling(nlm, rhoW, rhoE, Love_Scaling) real, dimension(:), intent(out) :: Love_Scaling !< Scaling factors for inverse SHT [nondim] ! Local variables - real, dimension(:), allocatable :: HDat, LDat, KDat ! Love numbers converted in CF reference frames - real :: H1, L1, K1 ! Temporary variables to store degree 1 Love numbers + real, dimension(:), allocatable :: HDat, LDat, KDat ! Love numbers converted in CF reference frames [nondim] + real :: H1, L1, K1 ! Temporary variables to store degree 1 Love numbers [nondim] integer :: n_tot ! Size of the stored Love numbers integer :: n, m, l @@ -163,7 +165,7 @@ subroutine SAL_init(G, US, param_file, CS) logical :: calculate_sal logical :: tides, use_tidal_sal_file - real :: tide_sal_scalar_value + real :: tide_sal_scalar_value ! Scaling SAL factor [nondim] ! Read all relevant parameters and write them to the model log. call log_version(param_file, mdl, version, "") diff --git a/src/parameterizations/lateral/MOM_spherical_harmonics.F90 b/src/parameterizations/lateral/MOM_spherical_harmonics.F90 index 2a72d26a20..82a34571d2 100644 --- a/src/parameterizations/lateral/MOM_spherical_harmonics.F90 +++ b/src/parameterizations/lateral/MOM_spherical_harmonics.F90 @@ -42,7 +42,7 @@ module MOM_spherical_harmonics contains !> Calculates forward spherical harmonics transforms -subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd) +subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd, tmp_scale) type(ocean_grid_type), intent(in) :: G !< The ocean's grid structure. type(sht_CS), intent(inout) :: CS !< Control structure for SHT real, dimension(SZI_(G),SZJ_(G)), & @@ -51,13 +51,20 @@ subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd) real, intent(out) :: Snm_Im(:) !< SHT coefficients for the imaginary modes (sine) [A] integer, optional, intent(in) :: Nd !< Maximum degree of the spherical harmonics !! overriding ndegree in the CS [nondim] + real, optional, intent(in) :: tmp_scale !< A temporary rescaling factor to convert + !! var to MKS units during the reproducing + !! sums [a A-1 ~> 1] ! local variables - integer :: Nmax ! Local copy of the maximum degree of the spherical harmonics [nondim] - integer :: Ltot ! Local copy of the number of spherical harmonics [nondim] + integer :: Nmax ! Local copy of the maximum degree of the spherical harmonics + integer :: Ltot ! Local copy of the number of spherical harmonics real, dimension(SZI_(G),SZJ_(G)) :: & pmn, & ! Current associated Legendre polynomials of degree n and order m [nondim] pmnm1, & ! Associated Legendre polynomials of degree n-1 and order m [nondim] pmnm2 ! Associated Legendre polynomials of degree n-2 and order m [nondim] + real :: scale ! A rescaling factor to temporarily convert var to MKS units during the + ! reproducing sums [a A-1 ~> 1] + real :: I_scale ! The inverse of scale [A a-1 ~> 1] + real :: sum_tot ! The total of all components output by the reproducing sum in arbitrary units [a] integer :: i, j, k integer :: is, ie, js, je, isd, ied, jsd, jed integer :: m, n, l @@ -81,12 +88,13 @@ subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd) do l=1,Ltot ; Snm_Re(l) = 0.0; Snm_Im(l) = 0.0 ; enddo if (CS%reprod_sum) then + scale = 1.0 ; if (present(tmp_scale)) scale = tmp_scale do m=0,Nmax l = order2index(m, Nmax) do j=js,je ; do i=is,ie - CS%Snm_Re_raw(i,j,l) = var(i,j) * CS%Pmm(i,j,m+1) * CS%cos_lonT_wtd(i,j,m+1) - CS%Snm_Im_raw(i,j,l) = var(i,j) * CS%Pmm(i,j,m+1) * CS%sin_lonT_wtd(i,j,m+1) + CS%Snm_Re_raw(i,j,l) = (scale*var(i,j)) * CS%Pmm(i,j,m+1) * CS%cos_lonT_wtd(i,j,m+1) + CS%Snm_Im_raw(i,j,l) = (scale*var(i,j)) * CS%Pmm(i,j,m+1) * CS%sin_lonT_wtd(i,j,m+1) pmnm2(i,j) = 0.0 pmnm1(i,j) = CS%Pmm(i,j,m+1) enddo ; enddo @@ -94,8 +102,8 @@ subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd) do n = m+1, Nmax ; do j=js,je ; do i=is,ie pmn(i,j) = & CS%a_recur(n+1,m+1) * CS%cos_clatT(i,j) * pmnm1(i,j) - CS%b_recur(n+1,m+1) * pmnm2(i,j) - CS%Snm_Re_raw(i,j,l+n-m) = var(i,j) * pmn(i,j) * CS%cos_lonT_wtd(i,j,m+1) - CS%Snm_Im_raw(i,j,l+n-m) = var(i,j) * pmn(i,j) * CS%sin_lonT_wtd(i,j,m+1) + CS%Snm_Re_raw(i,j,l+n-m) = (scale*var(i,j)) * pmn(i,j) * CS%cos_lonT_wtd(i,j,m+1) + CS%Snm_Im_raw(i,j,l+n-m) = (scale*var(i,j)) * pmn(i,j) * CS%sin_lonT_wtd(i,j,m+1) pmnm2(i,j) = pmnm1(i,j) pmnm1(i,j) = pmn(i,j) enddo ; enddo ; enddo @@ -125,10 +133,15 @@ subroutine spherical_harmonics_forward(G, CS, var, Snm_Re, Snm_Im, Nd) if (id_clock_sht_global_sum>0) call cpu_clock_begin(id_clock_sht_global_sum) if (CS%reprod_sum) then - do l=1,Ltot - Snm_Re(l) = reproducing_sum(CS%Snm_Re_raw(:,:,l)) - Snm_Im(l) = reproducing_sum(CS%Snm_Im_raw(:,:,l)) - enddo + sum_tot = reproducing_sum(CS%Snm_Re_raw(:,:,1:Ltot), sums=Snm_Re(1:Ltot)) + sum_tot = reproducing_sum(CS%Snm_Im_raw(:,:,1:Ltot), sums=Snm_Im(1:Ltot)) + if (scale /= 1.0) then + I_scale = 1.0 / scale + do l=1,Ltot + Snm_Re(l) = I_scale * Snm_Re(l) + Snm_Im(l) = I_scale * Snm_Im(l) + enddo + endif else call sum_across_PEs(Snm_Re, Ltot) call sum_across_PEs(Snm_Im, Ltot) @@ -240,8 +253,13 @@ subroutine spherical_harmonics_init(G, param_file, CS) allocate(CS%a_recur(CS%ndegree+1, CS%ndegree+1)); CS%a_recur(:,:) = 0.0 allocate(CS%b_recur(CS%ndegree+1, CS%ndegree+1)); CS%b_recur(:,:) = 0.0 do m=0,CS%ndegree ; do n=m+1,CS%ndegree + ! This expression will give NaNs with 32-bit integers for n > 23170, but this is trapped elsewhere. CS%a_recur(n+1,m+1) = sqrt(real((2*n-1) * (2*n+1)) / real((n-m) * (n+m))) - CS%b_recur(n+1,m+1) = sqrt(real((2*n+1) * (n+m-1) * (n-m-1)) / real((n-m) * (n+m) * (2*n-3))) + if (n <= 1024) then + CS%b_recur(n+1,m+1) = sqrt(real((2*n+1) * (n+m-1) * (n-m-1)) / real((n-m) * (n+m) * (2*n-3))) + else ! This branch for large n avoids NaNs due to 32-bit integer roll-over. + CS%b_recur(n+1,m+1) = sqrt((real(2*n+1) * real((n+m-1) * (n-m-1))) / (real((n-m) * (n+m)) * real(2*n-3))) + endif enddo ; enddo ! Calculate complex exponential factors @@ -253,8 +271,8 @@ subroutine spherical_harmonics_init(G, param_file, CS) do j=js,je ; do i=is,ie CS%cos_lonT(i,j,m+1) = cos(real(m) * (G%geolonT(i,j)*RADIAN)) CS%sin_lonT(i,j,m+1) = sin(real(m) * (G%geolonT(i,j)*RADIAN)) - CS%cos_lonT_wtd(i,j,m+1) = CS%cos_lonT(i,j,m+1) * G%areaT(i,j) / G%Rad_Earth**2 - CS%sin_lonT_wtd(i,j,m+1) = CS%sin_lonT(i,j,m+1) * G%areaT(i,j) / G%Rad_Earth**2 + CS%cos_lonT_wtd(i,j,m+1) = CS%cos_lonT(i,j,m+1) * G%areaT(i,j) / G%Rad_Earth_L**2 + CS%sin_lonT_wtd(i,j,m+1) = CS%sin_lonT(i,j,m+1) * G%areaT(i,j) / G%Rad_Earth_L**2 enddo ; enddo enddo