Skip to content

Latest commit

 

History

History
64 lines (52 loc) · 2.7 KB

GETTING_STARTED.md

File metadata and controls

64 lines (52 loc) · 2.7 KB

Dataset

Download the COCO/VOC dataset, and then

# symlink the coco dataset
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2014 datasets/coco/train2014
ln -s /path_to_coco_dataset/test2014 datasets/coco/test2014
ln -s /path_to_coco_dataset/val2014 datasets/coco/val2014

# for pascal voc dataset:
mkdir -p datasets/voc
ln -s /path_to_VOCdevkit/VOC2007 datasets/voc/VOC2007
ln -s /path_to_VOCdevkit/VOC2012 datasets/voc/VOC2012

P.S. COCO_2017_train = COCO_2014_train + valminusminival , COCO_2017_val = minival

Proposals

Download the proposals from Google-drive or Dropbox.

# We provide MCG proposals for COCO, and Selective-Search (SS) proposals for PASCAL VOC. 
# by default
mkdir proposal
ln -s  /path/to/downloaded/files/*.pkl proposal/
# You may also change config files to set proposal path

Evaluation

Here is an example to evaluate the released model:

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_net.py \
    --config-file "configs/voc/V_16_voc07.yaml" TEST.IMS_PER_BATCH 8 \
    OUTPUT_DIR /path/to/output/dir \
    MODEL.WEIGHT /path/to/model

Example results will be dumped in the /path/to/output/dir folder. You can use flag --vis to generate some visualizations.

Training

All the configuration files that we provide assume using 8 GPUs.

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py \
    --config-file "configs/voc/V_16_voc07.yaml" --use-tensorboard \
    OUTPUT_DIR /path/to/output/dir

Known issues

  1. If you get error RuntimeError: CUDA error: device-side assert triggered, check issue #22, or simply re-lanunch again.
  2. Since the voc datasets are very small, the best results usually are not achieved in the last epoch. Please save the intermediate models frequently (change SOLVER.CHECKPOINT_PERIOD) and check validation (voc 2007 test) results (especially these models around the 1st learning rate dropping time). You can also change the random seed SEED to a different value or -1 (random). Note that setting SEED to a fixed value still cannot guarantee deterministic behavior, see explanations here.
  3. OSError: Cannot allocate memory: please check this thread
  4. The displayed max mem doesn't align with the trun memory usage.