-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfg.py
99 lines (86 loc) · 5.04 KB
/
cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import tensorflow as tf
import json
import os
tf.app.flags.DEFINE_string("input_dir", '', "path to tfrecord containing images")
tf.app.flags.DEFINE_boolean("records", True,
"Use TFRecords. If true '--input_dir' \
must be a path to the record")
tf.app.flags.DEFINE_integer("num_samples", None,
"When using TFrecords the number of samples have to \
be calculated at runtime. Providing a value for \
--num_samples bypasses this computation.")
tf.app.flags.DEFINE_string("output_dir", None, "where to put output files")
tf.app.flags.DEFINE_string("visuals_dir", None, "where to put generated image files")
tf.app.flags.DEFINE_string("checkpoint", None,
"directory with checkpoint to resume training \
from or use for testing")
tf.app.flags.DEFINE_boolean("decoder", True,
'Attach top-half (decoder) of U-net. \
If True trains with --content_loss' )
tf.app.flags.DEFINE_boolean("discriminator", True,
"Add or remove discriminator. \
If True train with GAN loss on top \
of content loss.")
tf.app.flags.DEFINE_integer("overlap", 0,
"Overlapping edge for inpainting")
#TODO change overlap_weight to scalar
tf.app.flags.DEFINE_boolean("overlap_weight", False,
"""Add extra weight to overlapping region. Set to false for eval when trained with overlap=0""")
tf.app.flags.DEFINE_integer("mask_size", 64, "Size of mask for inpainting")
tf.app.flags.DEFINE_boolean("random_mask", False,
"""Randomise the mask position?""")
tf.app.flags.DEFINE_boolean("invert_mask", False,
"""Invert the boolean mask?""")
tf.app.flags.DEFINE_boolean("side_mask", False,
"""Mask the `mask_size' pixels on the right of the image. Invert for left""")
tf.app.flags.DEFINE_string("architecture", 'PCE', "Choose 'PCE'")
tf.app.flags.DEFINE_string("datareader", 'inpainting', "Choose 'inpainting''")
tf.app.flags.DEFINE_integer("ngf", 128,
"number of generator filters in first conv layer \
the decoder.")
tf.app.flags.DEFINE_integer("--ndf", 64,
"number of discriminator filters \
in first conv layer of the discriminator")
tf.app.flags.DEFINE_float("bat_loss", 0,
"Weight for Bhattaccarya loss")
tf.app.flags.DEFINE_float("tv_loss", 0,
"Weight for total variation loss")
tf.app.flags.DEFINE_float("l1_loss", 1,
"Weight for L1 loss")
tf.app.flags.DEFINE_float("l2_loss", 0,
"Weight for L2 loss")
tf.app.flags.DEFINE_float("content_weight", 0.999,
"weight on content term for generator gradient")
tf.app.flags.DEFINE_float("aux_weight", 10.0,
"weight on aux term for generator gradient")
tf.app.flags.DEFINE_float("gan_weight", 0.001,
"weight on GAN term for generator gradient")
tf.app.flags.DEFINE_integer("max_epochs", 0, "number of training epochs")
tf.app.flags.DEFINE_integer("summary_freq", 100,
"update summaries every summary_freq steps")
tf.app.flags.DEFINE_integer("progress_freq", 50,
"display progress every progress_freq steps")
# to get tracing working on GPU, LD_LIBRARY_PATH may need to be modified:
# LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/extras/CUPTI/lib64
tf.app.flags.DEFINE_integer("trace_freq", 0,
"trace execution every trace_freq steps")
tf.app.flags.DEFINE_integer("display_freq", 0,
"write current training images \
every display_freq steps")
tf.app.flags.DEFINE_integer("save_freq", 5000,
"save model every save_freq steps, 0 to disable")
tf.app.flags.DEFINE_boolean("flip", True, "flip images horizontally")
tf.app.flags.DEFINE_integer("im_size", 128, "Resize images to this size before processing")
tf.app.flags.DEFINE_integer("batch_size", 1, "number of images in batch")
tf.app.flags.DEFINE_float("lr", 0.0002, "initial learning rate for adam")
tf.app.flags.DEFINE_float("beta1", 0.5, "momentum term of adam")
tf.app.flags.DEFINE_integer("seed", 1860795210, "Random seed")
"""Restore options from checkpoint/options.json."""
restore_flags = {"ngf", "ndf",
"gan_weight", "content_weight", "lr", "beta1",
"trace_freq", "summary_freq", "aux", "aux_weight",
"num_classes", "discriminator", "overlap",
"decoder", 'bat_loss', 'l1_loss', 'l2_loss',
'architecture', 'datareader', 'pretrained',
'im_size', 'mask_size', 'side_mask',
'inpainting', 'tv_loss', 'random_mask', 'invert_mask'}