-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlazyarray.py
612 lines (540 loc) · 22.9 KB
/
lazyarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# encoding: utf-8
"""
lazyarray is a Python package that provides a lazily-evaluated numerical array
class, ``larray``, based on and compatible with NumPy arrays.
Copyright Andrew P. Davison, Joël Chavas, Elodie Legouée (CNRS) and Ankur Sinha, 2012-2024
"""
import numbers
import operator
from copy import deepcopy
from functools import wraps, reduce
import logging
import numpy as np
try:
from scipy import sparse
have_scipy = True
except ImportError:
have_scipy = False
try:
from collections.abc import Sized
from collections.abc import Mapping
from collections.abc import Iterator
except ImportError:
from collections import Sized
from collections import Mapping
from collections import Iterator
__version__ = "0.6.0"
logger = logging.getLogger("lazyarray")
def check_shape(meth):
"""
Decorator for larray magic methods, to ensure that the operand has
the same shape as the array.
"""
@wraps(meth)
def wrapped_meth(self, val):
if isinstance(val, (larray, np.ndarray)) and val.shape:
if val.shape != self._shape:
raise ValueError("shape mismatch: objects cannot be broadcast to a single shape")
return meth(self, val)
return wrapped_meth
def requires_shape(meth):
@wraps(meth)
def wrapped_meth(self, *args, **kwargs):
if self._shape is None:
raise ValueError("Shape of larray not specified")
return meth(self, *args, **kwargs)
return wrapped_meth
def full_address(addr, full_shape):
if not (isinstance(addr, np.ndarray) and addr.dtype == bool and addr.ndim == len(full_shape)):
if not isinstance(addr, tuple):
addr = (addr,)
if len(addr) < len(full_shape):
full_addr = [slice(None)] * len(full_shape)
for i, val in enumerate(addr):
full_addr[i] = val
addr = full_addr
return addr
def partial_shape(addr, full_shape):
"""
Calculate the size of the sub-array represented by `addr`
"""
def size(x, max):
if isinstance(x, (int, np.integer)):
return None
elif isinstance(x, slice):
y = min(max, x.stop or max) # slice limits can go past the bounds
return 1 + (y - (x.start or 0) - 1) // (x.step or 1)
elif isinstance(x, Sized):
if hasattr(x, 'dtype') and x.dtype == bool:
return x.sum()
else:
return len(x)
else:
raise TypeError("Unsupported index type %s" % type(x))
addr = full_address(addr, full_shape)
if isinstance(addr, np.ndarray) and addr.dtype == bool:
return (addr.sum(),)
elif all(isinstance(x, Sized) for x in addr):
return (len(addr[0]),)
else:
shape = [size(x, max) for (x, max) in zip(addr, full_shape)]
return tuple([x for x in shape if x is not None]) # remove empty dimensions
def reverse(func):
"""Given a function f(a, b), returns f(b, a)"""
@wraps(func)
def reversed_func(a, b):
return func(b, a)
reversed_func.__doc__ = "Reversed argument form of %s" % func.__doc__
reversed_func.__name__ = "reversed %s" % func.__name__
return reversed_func
# "The hash of a function object is hash(func_code) ^ id(func_globals)" ?
# see http://mail.python.org/pipermail/python-dev/2000-April/003397.html
def lazy_operation(name, reversed=False):
def op(self, val):
new_map = deepcopy(self)
f = getattr(operator, name)
if reversed:
f = reverse(f)
new_map.operations.append((f, val))
return new_map
return check_shape(op)
def lazy_inplace_operation(name):
def op(self, val):
self.operations.append((getattr(operator, name), val))
return self
return check_shape(op)
def lazy_unary_operation(name):
def op(self):
new_map = deepcopy(self)
new_map.operations.append((getattr(operator, name), None))
return new_map
return op
def is_array_like(value):
# False for numbers, generators, functions, iterators
if not isinstance(value, Sized):
return False
if have_scipy and sparse.issparse(value):
return True
if isinstance(value, Mapping):
# because we may wish to have lazy arrays in which each
# item is a dict, for example
return False
if getattr(value, "is_lazyarray_scalar", False):
# for user-defined classes that are "Sized" but that should
# be treated as individual elements in a lazy array
# the attribute "is_lazyarray_scalar" can be defined with value
# True.
return False
return True
class larray(object):
"""
Optimises storage of and operations on arrays in various ways:
- stores only a single value if all the values in the array are the same;
- if the array is created from a function `f(i)` or `f(i,j)`, then
elements are only evaluated when they are accessed. Any operations
performed on the array are also queued up to be executed on access.
Two use cases for the latter are:
- to save memory for very large arrays by accessing them one row or
column at a time: the entire array need never be in memory.
- in parallelized code, different rows or columns may be evaluated
on different nodes or in different threads.
"""
def __init__(self, value, shape=None, dtype=None):
"""
Create a new lazy array.
`value` : may be an int, float, bool, NumPy array, iterator,
generator or a function, `f(i)` or `f(i,j)`, depending on the
dimensions of the array.
`f(i,j)` should return a single number when `i` and `j` are integers,
and a 1D array when either `i` or `j` or both is a NumPy array (in the
latter case the two arrays must have equal lengths).
"""
self.dtype = dtype
self.operations = []
if isinstance(value, str):
raise TypeError("An larray cannot be created from a string")
elif isinstance(value, larray):
if shape is not None and value.shape is not None:
assert shape == value.shape
self._shape = shape or value.shape
self.base_value = value.base_value
self.dtype = dtype or value.dtype
self.operations = value.operations # should deepcopy?
elif is_array_like(value): # False for numbers, generators, functions, iterators
if have_scipy and sparse.issparse(value): # For sparse matrices
self.dtype = dtype or value.dtype
elif not isinstance(value, np.ndarray):
value = np.array(value, dtype=dtype)
elif dtype is not None:
assert np.can_cast(value.dtype, dtype, casting='safe') # or could convert value to the provided dtype
if shape and value.shape and value.shape != shape:
raise ValueError("Array has shape %s, value has shape %s" % (shape, value.shape))
if value.shape:
self._shape = value.shape
else:
self._shape = shape
self.base_value = value
else:
assert np.isreal(value) # also True for callables, generators, iterators
self._shape = shape
if dtype is None or isinstance(value, dtype):
self.base_value = value
else:
try:
self.base_value = dtype(value)
except TypeError:
self.base_value = value
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.base_value == other.base_value and self.operations == other.operations and self._shape == other.shape
elif isinstance(other, numbers.Number):
if len(self.operations) == 0:
if isinstance(self.base_value, numbers.Number):
return self.base_value == other
elif isinstance(self.base_value, np.ndarray):
return (self.base_value == other).all()
# todo: we could perform the evaluation ourselves, but that could have a performance hit
raise Exception("You will need to evaluate this lazyarray before checking for equality")
else:
# todo: add support for NumPy arrays
raise TypeError("Cannot at present compare equality of lazyarray and {}".format(type(other)))
def __deepcopy__(self, memo):
obj = type(self).__new__(type(self))
if isinstance(self.base_value, VectorizedIterable): # special case, but perhaps need to rethink
obj.base_value = self.base_value # whether deepcopy is appropriate everywhere
else:
try:
obj.base_value = deepcopy(self.base_value)
except TypeError:
# base_value cannot be copied, e.g. is a generator (but see generator_tools from PyPI)
# so here we create a reference rather than deepcopying - could cause problems
obj.base_value = self.base_value
obj._shape = self._shape
obj.dtype = self.dtype
obj.operations = []
for f, arg in self.operations:
if isinstance(f, np.ufunc):
obj.operations.append((f, deepcopy(arg)))
else:
obj.operations.append((deepcopy(f), deepcopy(arg)))
return obj
def __repr__(self):
return "<larray: base_value=%r shape=%r dtype=%r, operations=%r>" % (
self.base_value, self.shape, self.dtype, self.operations)
def _set_shape(self, value):
if (hasattr(self.base_value, "shape") and
self.base_value.shape and # values of type np.float have an empty shape
self.base_value.shape != value):
raise ValueError("Lazy array has fixed shape %s, cannot be changed to %s" % (self.base_value.shape, value))
self._shape = value
for op in self.operations:
if isinstance(op[1], larray):
op[1].shape = value
shape = property(fget=lambda self: self._shape,
fset=_set_shape, doc="Shape of the array")
@property
@requires_shape
def nrows(self):
"""Size of the first dimension of the array."""
return self._shape[0]
@property
@requires_shape
def ncols(self):
"""Size of the second dimension (if it exists) of the array."""
if len(self.shape) > 1:
return self._shape[1]
else:
return 1
@property
@requires_shape
def size(self):
"""Total number of elements in the array."""
return reduce(operator.mul, self._shape)
@property
def is_homogeneous(self):
"""True if all the elements of the array are the same."""
hom_base = (
isinstance(self.base_value, (int, np.integer, float, bool))
or type(self.base_value) == self.dtype
or (isinstance(self.dtype, type) and isinstance(self.base_value, self.dtype))
)
hom_ops = all(obj.is_homogeneous for f, obj in self.operations if isinstance(obj, larray))
return hom_base and hom_ops
def _partial_shape(self, addr):
"""
Calculate the size of the sub-array represented by `addr`
"""
return partial_shape(addr, self._shape)
def _homogeneous_array(self, addr):
self.check_bounds(addr)
shape = self._partial_shape(addr)
return np.ones(shape, type(self.base_value))
def _full_address(self, addr):
return full_address(addr, self._shape)
def _array_indices(self, addr):
self.check_bounds(addr)
def axis_indices(x, max):
if isinstance(x, (int, np.integer)):
return x
elif isinstance(x, slice): # need to handle negative values in slice
return np.arange((x.start or 0),
(x.stop or max),
(x.step or 1),
dtype=int)
elif isinstance(x, Sized):
if hasattr(x, 'dtype') and x.dtype == bool:
return np.arange(max)[x]
else:
return np.array(x)
else:
raise TypeError("Unsupported index type %s" % type(x))
addr = self._full_address(addr)
if isinstance(addr, np.ndarray) and addr.dtype == bool:
if addr.ndim == 1:
return (np.arange(self._shape[0])[addr],)
else:
raise NotImplementedError()
elif all(isinstance(x, Sized) for x in addr):
indices = [np.array(x) for x in addr]
return indices
else:
indices = [axis_indices(x, max) for (x, max) in zip(addr, self._shape)]
if len(indices) == 1:
return indices
elif len(indices) == 2:
if isinstance(indices[0], Sized):
if isinstance(indices[1], Sized):
mesh_xy = np.meshgrid(*indices)
return (mesh_xy[0].T, mesh_xy[1].T) # meshgrid works on (x,y), not (i,j)
return indices
else:
raise NotImplementedError("Only 1D and 2D arrays supported")
@requires_shape
def __getitem__(self, addr):
"""
Return one or more items from the array, as for NumPy arrays.
`addr` may be a single integer, a slice, a NumPy boolean array or a
NumPy integer array.
"""
return self._partially_evaluate(addr, simplify=False)
def _partially_evaluate(self, addr, simplify=False):
"""
Return part of the lazy array.
"""
if self.is_homogeneous:
if simplify:
base_val = self.base_value
else:
base_val = self._homogeneous_array(addr) * self.base_value
elif isinstance(self.base_value, (int, np.integer, float, bool)):
base_val = self._homogeneous_array(addr) * self.base_value
elif isinstance(self.base_value, np.ndarray):
base_val = self.base_value[addr]
elif have_scipy and sparse.issparse(self.base_value): # For sparse matrices larr[2, :]
base_val = self.base_value[addr]
elif callable(self.base_value):
indices = self._array_indices(addr)
base_val = self.base_value(*indices)
if isinstance(base_val, np.ndarray) and base_val.shape == (1,):
base_val = base_val[0]
elif hasattr(self.base_value, "lazily_evaluate"):
base_val = self.base_value.lazily_evaluate(addr, shape=self._shape)
elif isinstance(self.base_value, VectorizedIterable):
partial_shape = self._partial_shape(addr)
if partial_shape:
n = reduce(operator.mul, partial_shape)
else:
n = 1
base_val = self.base_value.next(n) # note that the array contents will depend on the order of access to elements
if n == 1:
base_val = base_val[0]
elif partial_shape and base_val.shape != partial_shape:
base_val = base_val.reshape(partial_shape)
elif isinstance(self.base_value, Iterator):
raise NotImplementedError("coming soon...")
else:
raise ValueError("invalid base value for array (%s)" % self.base_value)
return self._apply_operations(base_val, addr, simplify=simplify)
@requires_shape
def check_bounds(self, addr):
"""
Check whether the given address is within the array bounds.
"""
def is_boolean_array(arr):
return hasattr(arr, 'dtype') and arr.dtype == bool
def check_axis(x, size):
if isinstance(x, (int, np.integer)):
lower = upper = x
elif isinstance(x, slice):
lower = x.start or 0
upper = min(x.stop or size - 1, size - 1) # slices are allowed to go past the bounds
elif isinstance(x, Sized):
if is_boolean_array(x):
lower = 0
upper = x.size - 1
else:
if len(x) == 0:
raise ValueError("Empty address component (address was %s)" % str(addr))
if hasattr(x, "min"):
lower = x.min()
else:
lower = min(x)
if hasattr(x, "max"):
upper = x.max()
else:
upper = max(x)
else:
raise TypeError("Invalid array address: %s (element of type %s)" % (str(addr), type(x)))
if (lower < -size) or (upper >= size):
raise IndexError("Index out of bounds")
full_addr = self._full_address(addr)
if isinstance(addr, np.ndarray) and addr.dtype == bool:
if len(addr.shape) > len(self._shape):
raise IndexError("Too many indices for array")
for xmax, size in zip(addr.shape, self._shape):
upper = xmax - 1
if upper >= size:
raise IndexError("Index out of bounds")
else:
for i, size in zip(full_addr, self._shape):
check_axis(i, size)
def apply(self, f):
"""
Add the function `f(x)` to the list of the operations to be performed,
where `x` will be a scalar or a numpy array.
>>> m = larray(4, shape=(2,2))
>>> m.apply(np.sqrt)
>>> m.evaluate()
array([[ 2., 2.],
[ 2., 2.]])
"""
self.operations.append((f, None))
def _apply_operations(self, x, addr=None, simplify=False):
for f, arg in self.operations:
if arg is None:
x = f(x)
elif isinstance(arg, larray):
if addr is None:
x = f(x, arg.evaluate(simplify=simplify))
else:
x = f(x, arg._partially_evaluate(addr, simplify=simplify))
else:
x = f(x, arg)
return x
@requires_shape
def evaluate(self, simplify=False, empty_val=0):
"""
Return the lazy array as a real NumPy array.
If the array is homogeneous and ``simplify`` is ``True``, return a
single numerical value.
"""
# need to catch the situation where a generator-based larray is evaluated a second time
if self.is_homogeneous:
if simplify:
x = self.base_value
else:
x = self.base_value * np.ones(self._shape, dtype=self.dtype)
elif isinstance(self.base_value, (int, np.integer, float, bool, np.bool_)):
x = self.base_value * np.ones(self._shape, dtype=self.dtype)
elif isinstance(self.base_value, np.ndarray):
if self.base_value.shape == (1,):
x = self.base_value[0]
else:
x = self.base_value
elif callable(self.base_value):
x = np.array(np.fromfunction(self.base_value, shape=self._shape, dtype=int), dtype=self.dtype)
elif hasattr(self.base_value, "lazily_evaluate"):
x = self.base_value.lazily_evaluate(shape=self._shape)
elif isinstance(self.base_value, VectorizedIterable):
x = self.base_value.next(self.size)
if x.shape != self._shape:
x = x.reshape(self._shape)
elif have_scipy and sparse.issparse(self.base_value): # For sparse matrices
if empty_val != 0:
x = self.base_value.toarray((sparse.csc_matrix))
x = np.where(x, x, np.nan)
else:
x = self.base_value.toarray((sparse.csc_matrix))
elif isinstance(self.base_value, Iterator):
x = np.fromiter(self.base_value, dtype=self.dtype or float, count=self.size)
if x.shape != self._shape:
x = x.reshape(self._shape)
else:
raise ValueError("invalid base value for array")
return self._apply_operations(x, simplify=simplify)
def __call__(self, arg):
if callable(self.base_value):
if isinstance(arg, larray):
new_map = deepcopy(arg)
elif callable(arg):
new_map = larray(arg)
else:
raise Exception("Argument must be either callable or an larray.")
new_map.operations.append((self.base_value, None))
new_map.operations.extend(self.operations)
return new_map
else:
raise Exception("larray is not callable")
__iadd__ = lazy_inplace_operation('add')
__isub__ = lazy_inplace_operation('sub')
__imul__ = lazy_inplace_operation('mul')
__idiv__ = lazy_inplace_operation('div')
__ipow__ = lazy_inplace_operation('pow')
__add__ = lazy_operation('add')
__radd__ = __add__
__sub__ = lazy_operation('sub')
__rsub__ = lazy_operation('sub', reversed=True)
__mul__ = lazy_operation('mul')
__rmul__ = __mul__
__div__ = lazy_operation('div')
__rdiv__ = lazy_operation('div', reversed=True)
__truediv__ = lazy_operation('truediv')
__rtruediv__ = lazy_operation('truediv', reversed=True)
__pow__ = lazy_operation('pow')
__lt__ = lazy_operation('lt')
__gt__ = lazy_operation('gt')
__le__ = lazy_operation('le')
__ge__ = lazy_operation('ge')
__neg__ = lazy_unary_operation('neg')
__pos__ = lazy_unary_operation('pos')
__abs__ = lazy_unary_operation('abs')
class VectorizedIterable(object):
"""
Base class for any class which has a method `next(n)`, i.e., where you
can choose how many values to return rather than just returning one at a
time.
"""
pass
def _build_ufunc(func):
"""Return a ufunc that works with lazy arrays"""
def larray_compatible_ufunc(x):
if isinstance(x, larray):
y = deepcopy(x)
y.apply(func)
return y
else:
return func(x)
return larray_compatible_ufunc
def _build_ufunc_2nd_arg(func):
"""Return a ufunc taking a second, non-array argument, that works with lazy arrays"""
def larray_compatible_ufunc2(x1, x2):
if not isinstance(x2, numbers.Number):
raise TypeError("lazyarry ufuncs do not accept an array as the second argument")
if isinstance(x1, larray):
def partial(x):
return func(x, x2)
y = deepcopy(x1)
y.apply(partial)
return y
else:
return func(x1, x2)
return larray_compatible_ufunc2
# build lazy-array compatible versions of NumPy ufuncs
namespace = globals()
for name in dir(np):
obj = getattr(np, name)
if isinstance(obj, np.ufunc) and name not in namespace:
if name in ("power", "fmod", "arctan2, hypot, ldexp, maximum, minimum"):
namespace[name] = _build_ufunc_2nd_arg(obj)
else:
namespace[name] = _build_ufunc(obj)