forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_digital_image_processing.py
134 lines (98 loc) · 4.07 KB
/
test_digital_image_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
PyTest's for Digital Image Processing
"""
import numpy as np
from cv2 import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uint8
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
img = imread(r"digital_image_processing/image_data/lena_small.jpg")
gray = cvtColor(img, COLOR_BGR2GRAY)
# Test: convert_to_negative()
def test_convert_to_negative():
negative_img = cn.convert_to_negative(img)
# assert negative_img array for at least one True
assert negative_img.any()
# Test: change_contrast()
def test_change_contrast():
with Image.open("digital_image_processing/image_data/lena_small.jpg") as img:
# Work around assertion for response
assert str(cc.change_contrast(img, 110)).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at"
)
# canny.gen_gaussian_kernel()
def test_gen_gaussian_kernel():
resp = canny.gen_gaussian_kernel(9, sigma=1.4)
# Assert ambiguous array
assert resp.all()
# canny.py
def test_canny():
canny_img = imread("digital_image_processing/image_data/lena_small.jpg", 0)
# assert ambiguous array for all == True
assert canny_img.all()
canny_array = canny.canny(canny_img)
# assert canny array for at least one True
assert canny_array.any()
# filters/gaussian_filter.py
def test_gen_gaussian_kernel_filter():
assert gg.gaussian_filter(gray, 5, sigma=0.9).all()
def test_convolve_filter():
# laplace diagonals
laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
res = conv.img_convolve(gray, laplace).astype(uint8)
assert res.any()
def test_median_filter():
assert med.median_filter(gray, 3).any()
def test_sobel_filter():
grad, theta = sob.sobel_filter(gray)
assert grad.any()
assert theta.any()
def test_sepia():
sepia = sp.make_sepia(img, 20)
assert sepia.all()
def test_burkes(file_path: str = "digital_image_processing/image_data/lena_small.jpg"):
burkes = bs.Burkes(imread(file_path, 1), 120)
burkes.process()
assert burkes.output_img.any()
def test_nearest_neighbour(
file_path: str = "digital_image_processing/image_data/lena_small.jpg",
):
nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200)
nn.process()
assert nn.output.any()
def test_local_binary_pattern():
# pull request 10161 before:
# "digital_image_processing/image_data/lena.jpg"
# after: "digital_image_processing/image_data/lena_small.jpg"
from os import getenv # Speed up our Continuous Integration tests
file_name = "lena_small.jpg" if getenv("CI") else "lena.jpg"
file_path = f"digital_image_processing/image_data/{file_name}"
# Reading the image and converting it to grayscale
image = imread(file_path, 0)
# Test for get_neighbors_pixel function() return not None
x_coordinate = 0
y_coordinate = 0
center = image[x_coordinate][y_coordinate]
neighbors_pixels = lbp.get_neighbors_pixel(
image, x_coordinate, y_coordinate, center
)
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(image.shape[0]):
for j in range(image.shape[1]):
lbp_image[i][j] = lbp.local_binary_value(image, i, j)
assert lbp_image.any()