We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
首先感谢作者无私奉献开源了这个repo,我尝试了几个方法,目前Neuralsim是效果最好的。
我基于waymo做了18组实验(这些场景是在repo提供的81个动态场景里挑选的,有低速行驶和高速行驶的),有7组的loss不收敛。 使用的config: all_occ.with_normals.240201.yaml。 使用的segmentation模型:https://github.com/open-mmlab/mmsegmentation/tree/main/configs/mask2former
想请教的问题:
具体复现结果如下:
# - segment-1758724094753801109_1251_037_1271_037_with_camera_labels # 64km/h # - segment-3490810581309970603_11125_000_11145_000_with_camera_labels # 71km/h # - segment-3591015878717398163_1381_280_1401_280_with_camera_labels # 68km/h # - segment-4468278022208380281_455_820_475_820_with_camera_labels # 70km/h, good case # - segment-4537254579383578009_3820_000_3840_000_with_camera_labels # 68km/h, good case # - segment-10072231702153043603_5725_000_5745_000_with_camera_labels # 40 -> 70km/h,宽阔,只有前方一辆车 # - segment-11454085070345530663_1905_000_1925_000_with_camera_labels #70km/h,good case
segment-9653249092275997647_980_000_1000_000_with_camera_labels, 0, 190 # 路口,很多行人,这组效果最好,是code_multi/configs/exps/fg_neus=permuto/all_occ.with_normals.240201.yaml默认使用的scene,自车低速行驶。
segment-9653249092275997647_980_000_1000_000_with_camera_labels, 0, 190 # 路口,很多行人
119178,低速行驶,17km/h
365758,低速行驶,20km/h
189139,低速行驶,25km
segment-15053781258223091665_3192_117_3212_117_with_camera_labels # 20->75km/h,问题:车道线不清晰
segment-15053781258223091665_3192_117_3212_117_with_camera_labels # 20->75km/h
https://github.com/PJLab-ADG/neuralsim/assets/165770555/cfbf155e-fbaf-4220-8e2a-5248b649ff35 seg188749,整体可以,车道线不清晰, 36km/h
seg188749
segment-14369250836076988112_7249_040_7269_040_with_camera_labels # 56km/h,问题:空中多了一块 https://github.com/PJLab-ADG/neuralsim/assets/165770555/f4fb8402-2f6f-44e9-b3c5-a96bbb0ed5c0
segment-14369250836076988112_7249_040_7269_040_with_camera_labels # 56km/h
177369,空中多了一片东西,17km/h
391943,低速行驶,夜晚,效果可以,空中多了一片雨滴,15km/h
364414,低速行驶,street彻底糊了,效果很差,0->50km/h
416406 ,0-25km https://github.com/PJLab-ADG/neuralsim/assets/165770555/ed86c126-da63-4b0c-b70b-a6cc0c9222d4
train-20240505234622385.log
train-20240505234659815.log
train-20240505234419432.log
2024-05-05T17:52:59.168990620Z 61%|██████ | 9174/15000 [1:51:42<49:52, 1.95it/s, loss_total=1.9]�[A 2024-05-05T17:52:59.672168504Z 61%|██████ | 9174/15000 [1:51:42<49:52, 1.95it/s, loss_total=1.95]�[A 2024-05-05T17:52:59.672575273Z 61%|██████ | 9175/15000 [1:51:43<49:34, 1.96it/s, loss_total=1.95]�[A 2024-05-05T17:53:00.187376121Z 61%|██████ | 9175/15000 [1:51:43<49:34, 1.96it/s, loss_total=1.55]�[A 2024-05-05T17:53:00.187871303Z 61%|██████ | 9176/15000 [1:51:43<49:41, 1.95it/s, loss_total=1.55]�[A 2024-05-05T17:53:00.854840512Z 61%|██████ | 9176/15000 [1:51:43<49:41, 1.95it/s, loss_total=1.77]�[A 2024-05-05T17:53:00.855162754Z 61%|██████ | 9177/15000 [1:51:44<54:12, 1.79it/s, loss_total=1.77]�[A 2024-05-05T17:53:01.381251068Z 61%|██████ | 9177/15000 [1:51:44<54:12, 1.79it/s, loss_total=1.84]�[A 2024-05-05T17:53:01.381580806Z 61%|██████ | 9178/15000 [1:51:45<53:16, 1.82it/s, loss_total=1.84]�[A 2024-05-05T17:53:01.893998791Z 61%|██████ | 9178/15000 [1:51:45<53:16, 1.82it/s, loss_total=1.67]�[A 2024-05-05T17:53:01.894265751Z 61%|██████ | 9179/15000 [1:51:45<52:12, 1.86it/s, loss_total=1.67]�[A 2024-05-05T17:53:02.518480330Z 61%|██████ | 9179/15000 [1:51:45<52:12, 1.86it/s, loss_total=1.52]�[A 2024-05-05T17:53:02.518743279Z 61%|██████ | 9180/15000 [1:51:46<54:42, 1.77it/s, loss_total=1.52]�[A 2024-05-05T17:53:03.074412687Z 61%|██████ | 9180/15000 [1:51:46<54:42, 1.77it/s, loss_total=1.29]�[A 2024-05-05T17:53:03.074830105Z 61%|██████ | 9181/15000 [1:51:46<54:27, 1.78it/s, loss_total=1.29]�[A 2024-05-05T17:53:03.582773677Z 61%|██████ | 9181/15000 [1:51:46<54:27, 1.78it/s, loss_total=1.35]�[A 2024-05-05T17:53:03.583124855Z 61%|██████ | 9182/15000 [1:51:47<52:54, 1.83it/s, loss_total=1.35]�[A 2024-05-05T17:53:04.045558308Z 61%|██████ | 9182/15000 [1:51:47<52:54, 1.83it/s, loss_total=1.27]�[A 2024-05-05T17:53:04.045775159Z 61%|██████ | 9183/15000 [1:51:47<50:29, 1.92it/s, loss_total=1.27]�[A 2024-05-05T17:53:04.609443972Z 61%|██████ | 9183/15000 [1:51:47<50:29, 1.92it/s, loss_total=1.95]�[A 2024-05-05T17:53:04.609845332Z 61%|██████ | 9184/15000 [1:51:48<51:43, 1.87it/s, loss_total=1.95]�[A 2024-05-05T17:53:04.788085968Z 61%|██████ | 9184/15000 [1:51:48<51:43, 1.87it/s, loss_total=1.76]�[A 61%|██████ | 9184/15000 [1:51:48<1:10:48, 1.37it/s, loss_total=1.76] 2024-05-05T17:53:04.788116308Z 0%| | 0/1 [2:07:17<?, ?it/s] 2024-05-05T17:53:04.788133860Z Error occurred in exp: logs/waymo/code_multi/fg_neus=permuto/all_occ.with_normals.24020/seg453725 2024-05-05T17:53:04.802094313Z Traceback (most recent call last): 2024-05-05T17:53:04.802125179Z File "dataio/autonomous_driving/waymo/train_multi_and_eval_multiple.py", line 30, in <module> 2024-05-05T17:53:04.802129404Z train_main(sce_args) 2024-05-05T17:53:04.802132444Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1537, in main_function 2024-05-05T17:53:04.802135738Z raise e 2024-05-05T17:53:04.802138554Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1529, in main_function 2024-05-05T17:53:04.802141435Z train_step() 2024-05-05T17:53:04.802144030Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 2024-05-05T17:53:04.802147167Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 2024-05-05T17:53:04.802150041Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 2024-05-05T17:53:04.802153010Z ret = self.fn(*args, **kwargs) 2024-05-05T17:53:04.802155911Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1345, in train_step 2024-05-05T17:53:04.802158779Z ret, losses = trainer('pixel', sample, ground_truth, local_it, logger=logger) 2024-05-05T17:53:04.802161624Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl 2024-05-05T17:53:04.802182312Z return forward_call(*input, **kwargs) 2024-05-05T17:53:04.802185404Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 2024-05-05T17:53:04.802188365Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 2024-05-05T17:53:04.802191166Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 2024-05-05T17:53:04.802194122Z ret = self.fn(*args, **kwargs) 2024-05-05T17:53:04.802196831Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 344, in forward 2024-05-05T17:53:04.802199701Z ret, losses = self.train_step_pixel(sample, ground_truth, it, logger=logger) 2024-05-05T17:53:04.802202496Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 500, in train_step_pixel 2024-05-05T17:53:04.802205371Z ret = self.renderer.render( 2024-05-05T17:53:04.802208018Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 937, in render 2024-05-05T17:53:04.802211058Z ret = self(*rays, scene=scene, observer=observer, **kwargs) 2024-05-05T17:53:04.802213869Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl 2024-05-05T17:53:04.802216850Z return forward_call(*input, **kwargs) 2024-05-05T17:53:04.802220840Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 96, in forward 2024-05-05T17:53:04.802223668Z return self.ray_query(*args, **kwargs) 2024-05-05T17:53:04.802226364Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 2024-05-05T17:53:04.802229416Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 2024-05-05T17:53:04.802232338Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 2024-05-05T17:53:04.802235185Z ret = self.fn(*args, **kwargs) 2024-05-05T17:53:04.802237827Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 627, in ray_query 2024-05-05T17:53:04.802240628Z batched_query_shared(model, group) 2024-05-05T17:53:04.802243280Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 263, in batched_query_shared 2024-05-05T17:53:04.802246252Z raw_ret: dict = model.batched_ray_query( 2024-05-05T17:53:04.802248936Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/fields_conditional_dynamic/neus/renderer_mixin.py", line 288, in batched_ray_query 2024-05-05T17:53:04.802252145Z details['accel'] = self.accel.debug_stats() 2024-05-05T17:53:04.802254880Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context 2024-05-05T17:53:04.802260619Z return func(*args, **kwargs) 2024-05-05T17:53:04.802263383Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/accelerations/occgrid_accel/batched_dynamic.py", line 253, in debug_stats 2024-05-05T17:53:04.802266720Z **tensor_statistics(num_occupied_per_nonempty_ins, 'per_ins.nonempty.num_occupied', metrics=['mean', 'min', 'max', 'std']), 2024-05-05T17:53:04.802269593Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/utils.py", line 797, in tensor_statistics 2024-05-05T17:53:04.802272508Z return {f"{prefix}{'.' if prefix and not prefix.endswith('.') else ''}{key}": metric_fn[key](data).item() for key in metrics if key in metric_fn} 2024-05-05T17:53:04.802275665Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/utils.py", line 797, in <dictcomp> 2024-05-05T17:53:04.802278848Z return {f"{prefix}{'.' if prefix and not prefix.endswith('.') else ''}{key}": metric_fn[key](data).item() for key in metrics if key in metric_fn} 2024-05-05T17:53:04.802282326Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/utils.py", line 785, in <lambda> 2024-05-05T17:53:04.802285378Z "min": lambda x: x.min(), 2024-05-05T17:53:04.802288186Z RuntimeError: min(): Expected reduction dim to be specified for input.numel() == 0. Specify the reduction dim with the 'dim' argument.
train-20240505233823947.log
scenario_id=segment-3490810581309970603_11125_000_11145_000_with_camera_labels
34: 2024-05-05T17:40:15.446258349Z 95%|█████████▌| 14267/15000 [1:52:54<05:26, 2.24it/s, loss_total=0.326]�[A 35: 2024-05-05T17:40:15.446497280Z 95%|█████████▌| 14268/15000 [1:52:54<05:16, 2.32it/s, loss_total=0.326]�[A 36: 2024-05-05T17:40:15.809401574Z 95%|█████████▌| 14268/15000 [1:52:54<05:16, 2.32it/s, loss_total=0.26] �[A 37: 2024-05-05T17:40:15.809610367Z 95%|█████████▌| 14269/15000 [1:52:55<05:00, 2.43it/s, loss_total=0.26]�[A 38: 2024-05-05T17:40:16.275019572Z 95%|█████████▌| 14269/15000 [1:52:55<05:00, 2.43it/s, loss_total=0.24]�[A 39: 2024-05-05T17:40:16.275154072Z 95%|█████████▌| 14270/15000 [1:52:55<05:12, 2.34it/s, loss_total=0.24]�[A 40: 2024-05-05T17:40:16.699921008Z 95%|█████████▌| 14270/15000 [1:52:55<05:12, 2.34it/s, loss_total=0.372]�[A 41: 2024-05-05T17:40:16.700209054Z 95%|█████████▌| 14271/15000 [1:52:56<05:11, 2.34it/s, loss_total=0.372]�[A 42: 2024-05-05T17:40:17.101061717Z 95%|█████████▌| 14271/15000 [1:52:56<05:11, 2.34it/s, loss_total=0.239]�[A 43: 2024-05-05T17:40:17.101251008Z 95%|█████████▌| 14272/15000 [1:52:56<05:05, 2.39it/s, loss_total=0.239]�[A 44: 2024-05-05T17:40:17.465482350Z 95%|█████████▌| 14272/15000 [1:52:56<05:05, 2.39it/s, loss_total=0.436]�[A 95%|█████████▌| 14272/15000 [1:52:56<05:45, 2.11it/s, loss_total=0.436] 45: 2024-05-05T17:40:17.465515750Z 0%| | 0/1 [1:57:24<?, ?it/s] 46: 2024-05-05T17:40:17.465537233Z Error occurred in exp: logs/waymo/code_multi/fg_neus=permuto/all_occ.with_normals.24020/seg349081 47: 2024-05-05T17:40:17.468884262Z Traceback (most recent call last): 48: 2024-05-05T17:40:17.468894599Z File "dataio/autonomous_driving/waymo/train_multi_and_eval_multiple.py", line 30, in <module> 49: 2024-05-05T17:40:17.468897375Z train_main(sce_args) 50: 2024-05-05T17:40:17.468899457Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1537, in main_function 51: 2024-05-05T17:40:17.468901977Z raise e 52: 2024-05-05T17:40:17.468903926Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1529, in main_function 53: 2024-05-05T17:40:17.468906147Z train_step() 54: 2024-05-05T17:40:17.468908124Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 55: 2024-05-05T17:40:17.468910394Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 56: 2024-05-05T17:40:17.468912465Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 57: 2024-05-05T17:40:17.468914765Z ret = self.fn(*args, **kwargs) 58: 2024-05-05T17:40:17.468916721Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 1400, in train_step 59: 2024-05-05T17:40:17.468918774Z ret, losses = trainer('lidar', sample, ground_truth, local_it, logger=logger) 60: 2024-05-05T17:40:17.468920915Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl 61: 2024-05-05T17:40:17.468923227Z return forward_call(*input, **kwargs) 62: 2024-05-05T17:40:17.468925196Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 63: 2024-05-05T17:40:17.468927319Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 64: 2024-05-05T17:40:17.468929319Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 65: 2024-05-05T17:40:17.468931591Z ret = self.fn(*args, **kwargs) 66: 2024-05-05T17:40:17.468933531Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 348, in forward 67: 2024-05-05T17:40:17.468935587Z ret, losses = self.train_step_lidar(sample, ground_truth, it, logger=logger) 68: 2024-05-05T17:40:17.468937575Z File "/home/rongbo.ma/neuralsim/code_multi/tools/train.py", line 765, in train_step_lidar 69: 2024-05-05T17:40:17.468939672Z ret = self.renderer.render( 70: 2024-05-05T17:40:17.468949806Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 937, in render 71: 2024-05-05T17:40:17.468952085Z ret = self(*rays, scene=scene, observer=observer, **kwargs) 72: 2024-05-05T17:40:17.468954154Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl 73: 2024-05-05T17:40:17.468956293Z return forward_call(*input, **kwargs) 74: 2024-05-05T17:40:17.468958702Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 96, in forward 75: 2024-05-05T17:40:17.468960834Z return self.ray_query(*args, **kwargs) 76: 2024-05-05T17:40:17.468962792Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 561, in <lambda> 77: 2024-05-05T17:40:17.468964964Z return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) 78: 2024-05-05T17:40:17.468966995Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/profile.py", line 501, in __call__ 79: 2024-05-05T17:40:17.468969282Z ret = self.fn(*args, **kwargs) 80: 2024-05-05T17:40:17.468971206Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 627, in ray_query 81: 2024-05-05T17:40:17.468973299Z batched_query_shared(model, group) 82: 2024-05-05T17:40:17.468975245Z File "/home/rongbo.ma/neuralsim/app/renderers/buffer_compose_renderer.py", line 259, in batched_query_shared 83: 2024-05-05T17:40:17.468977324Z model.set_condition(batched_infos) 84: 2024-05-05T17:40:17.468979240Z File "/home/rongbo.ma/neuralsim/app/models/shared/batched_neus.py", line 404, in set_condition 85: 2024-05-05T17:40:17.468981351Z super().set_condition(z=z_ins_per_batch, ins_inds_per_batch=ins_inds_per_batch) 86: 2024-05-05T17:40:17.468983453Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/fields_conditional/neus/renderer_mixin.py", line 105, in set_condition 87: 2024-05-05T17:40:17.468985675Z self.accel.cur_batch__step(self.it, self.query_sdf) 88: 2024-05-05T17:40:17.468987914Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context 89: 2024-05-05T17:40:17.468990095Z return func(*args, **kwargs) 90: 2024-05-05T17:40:17.468992076Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/accelerations/occgrid_accel/batched.py", line 149, in cur_batch__step 91: 2024-05-05T17:40:17.468994266Z updated = self.occ.step(cur_it, val_query_fn_normalized_x_bi, within_bi=self.ins_inds_per_batch, logger=logger) 92: 2024-05-05T17:40:17.468996555Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context 93: 2024-05-05T17:40:17.468998669Z return func(*args, **kwargs) 94: 2024-05-05T17:40:17.469000564Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/accelerations/occgrid/ema_batched.py", line 145, in step 95: 2024-05-05T17:40:17.469002721Z self._step(cur_it, val_query_fn_normalized_x_bi, within_bi=within_bi, 96: 2024-05-05T17:40:17.469007031Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context 97: 2024-05-05T17:40:17.469009352Z return func(*args, **kwargs) 98: 2024-05-05T17:40:17.469011551Z File "/home/rongbo.ma/anaconda3/envs/nr3d_new/lib/python3.8/site-packages/nr3d_lib/models/accelerations/occgrid/ema_batched.py", line 193, in _step 99: 2024-05-05T17:40:17.469013680Z assert idx_nonempty.numel() > 0, "Occupancy grid becomes empty during training. Your model/algorithm/training setting might be incorrect. Please check." 100: 2024-05-05T17:40:17.469016117Z AssertionError: Occupancy grid becomes empty during training. Your model/algorithm/training setting might be incorrect. Please check
The text was updated successfully, but these errors were encountered:
补充一下7组训练失败的case,每个20s的场景分成前后两段10s,重新训练的结果。 怀疑是速度太大,自车移动距离过长,导致场景太大。
结论:
远处山突然丢了,紧接着一团云闪现出来向自车移动
地面没了,训练失败
立交桥突然消失
所有场景都是空中多一块,向自车冲来。 这个多一块尤为严重。
立交桥下,非常糊。
Sorry, something went wrong.
No branches or pull requests
首先感谢作者无私奉献开源了这个repo,我尝试了几个方法,目前Neuralsim是效果最好的。
我基于waymo做了18组实验(这些场景是在repo提供的81个动态场景里挑选的,有低速行驶和高速行驶的),有7组的loss不收敛。
使用的config: all_occ.with_normals.240201.yaml。
使用的segmentation模型:https://github.com/open-mmlab/mmsegmentation/tree/main/configs/mask2former
想请教的问题:
具体复现结果如下:
loss不收敛导致训到一半挂了(7组),自车速度在70km/h左右
训练完成的(11组)
效果好的(4组)
segment-9653249092275997647_980_000_1000_000_with_camera_labels, 0, 190 # 路口,很多行人
,这组效果最好,是code_multi/configs/exps/fg_neus=permuto/all_occ.with_normals.240201.yaml默认使用的scene,自车低速行驶。seg965324_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
119178,低速行驶,17km/h
seg119178_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
365758,低速行驶,20km/h
seg365758_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
189139,低速行驶,25km
seg189139_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
车道线不清晰(2组)
segment-15053781258223091665_3192_117_3212_117_with_camera_labels # 20->75km/h
,问题:车道线不清晰https://github.com/PJLab-ADG/neuralsim/assets/165770555/cfbf155e-fbaf-4220-8e2a-5248b649ff35
seg188749
,整体可以,车道线不清晰, 36km/hseg188749_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
空中多了一块东西(3组)
segment-14369250836076988112_7249_040_7269_040_with_camera_labels # 56km/h
,问题:空中多了一块https://github.com/PJLab-ADG/neuralsim/assets/165770555/f4fb8402-2f6f-44e9-b3c5-a96bbb0ed5c0
177369,空中多了一片东西,17km/h
seg177369_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
391943,低速行驶,夜晚,效果可以,空中多了一片雨滴,15km/h
彻底糊了(1组)
364414,低速行驶,street彻底糊了,效果很差,0->50km/h
seg364414_iter15.0k_eval_ds.4.0_camera_FRONT_1l.mp4
最开始几帧远处闪了几下(1组)
416406 ,0-25km
https://github.com/PJLab-ADG/neuralsim/assets/165770555/ed86c126-da63-4b0c-b70b-a6cc0c9222d4
下面是7组失败的场景和一组成功的场景(seg965324,绿色)的loss对比
pixel loss
lidar loss
下面是各组实验的具体log记录
loss NAN
segment-1758724094753801109_1251_037_1271_037_with_camera_labels
segment-10072231702153043603_5725_000_5745_000_with_camera_labels
train-20240505234622385.log
segment-11454085070345530663_1905_000_1925_000_with_camera_labels
train-20240505234659815.log
segment-4537254579383578009_3820_000_3840_000_with_camera_labels
train-20240505234419432.log
train-20240505233823947.log
AssertionError: Occupancy grid becomes empty during training.
scenario_id=segment-3490810581309970603_11125_000_11145_000_with_camera_labels
The text was updated successfully, but these errors were encountered: