-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdata_feed.py
58 lines (49 loc) · 1.82 KB
/
data_feed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import time
from collections import OrderedDict
import cv2
import numpy as np
__all__ = ['reader']
def reader(images=None, paths=None):
"""
Preprocess to yield image.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
paths (list[str]): paths to images.
Yield:
each (collections.OrderedDict): info of original image, preprocessed image.
"""
component = list()
if paths:
for im_path in paths:
each = OrderedDict()
assert os.path.isfile(im_path), "The {} isn't a valid file path.".format(im_path)
im = cv2.imread(im_path).astype('float32')
each['org_im'] = im
each['org_im_path'] = im_path
each['org_im_shape'] = im.shape
component.append(each)
if images is not None:
assert type(images) is list, "images should be a list."
for im in images:
im = im.astype(np.float32)
each = OrderedDict()
each['org_im'] = im
each['org_im_path'] = 'ndarray_time={}'.format(round(time.time(), 6) * 1e6)
each['org_im_shape'] = im.shape
component.append(each)
for element in component:
img = element['org_im'].copy()
img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
shape = img.shape
img_scale = cv2.resize(img, (shape[1] * 2, shape[0] * 2), interpolation=cv2.INTER_CUBIC)
img_y = np.expand_dims(img[:, :, 0], axis=2)
img_scale_pbpr = img_scale[..., 1:]
img_y = img_y.transpose((2, 0, 1)) / 255
img_scale_pbpr = img_scale_pbpr.transpose(2, 0, 1) / 255
element['img_y'] = img_y
element['img_scale_pbpr'] = img_scale_pbpr
yield element
if __name__ == "__main__":
path = ['BSD100_001.png']
reader(paths=path)