Skip to content

Latest commit

 

History

History
91 lines (57 loc) · 2.66 KB

File metadata and controls

91 lines (57 loc) · 2.66 KB

Pneumonia_CT_LKM_PP

Module Name Pneumonia_CT_LKM_PP
Category Image segmentation
Network -
Dataset -
Fine-tuning supported or not No
Module Size 35M
Data indicators -
Latest update date 2021-02-26

I. Basic Information

  • Module Introduction

    • Pneumonia CT analysis model (Pneumonia-CT-LKM-PP) can efficiently complete the detection of lesions and outline the patient's CT images. Through post-processing codes, the number, volume, and lesions of lung lesions can be analyzed. This model has been fully trained by high-resolution and low-resolution CT image data, which can adapt to the examination data collected by different levels of CT imaging equipment.

II. Installation

  • 1、Environmental Dependence

    • paddlepaddle >= 2.0.0

    • paddlehub >= 2.0.0

  • 2、Installation

III. Module API Prediction

  • 1、Prediction Code Example

    import paddlehub as hub
    
    pneumonia = hub.Module(name="Pneumonia_CT_LKM_PP")
    
    input_only_lesion_np_path = "/PATH/TO/ONLY_LESION_NP"
    input_both_lesion_np_path = "/PATH/TO/LESION_NP"
    input_both_lung_np_path = "/PATH/TO/LUNG_NP"
    
    # set input dict
    input_dict = {"image_np_path": [
                                    [input_only_lesion_np_path],
                                    [input_both_lesion_np_path, input_both_lung_np_path],
                                    ]}
    
    # execute predict and print the result
    results = pneumonia.segmentation(data=input_dict)
    for result in results:
        print(result)
  • 2、API

    • def segmentation(data)
      • Prediction API, used for CT analysis of pneumonia.

      • Parameter

        • data (dict): key is "image_np_path", value is the list of results which contains lesion and lung segmentation masks.
      • Return

        • result (list[dict]): the list of recognition results, where each element is dict and each field is:
          • input_lesion_np_path: input path of lesion.
          • output_lesion_np: segmentation result path of lesion.
          • input_lung_np_path: input path of lung.
          • output_lung_np:segmentation result path of lung.

IV. Release Note

  • 1.0.0

    First release