-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathvose_alias.py
65 lines (54 loc) · 1.68 KB
/
vose_alias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import numpy as np
from paddlehub.common.logger import logger
from slda_weibo.util import rand, rand_k
class VoseAlias(object):
"""Vose's Alias Method.
"""
def __init__(self):
self.__alias = None
self.__prob = None # np.array
def initialize(self, distribution):
"""Initialize the alias table according to the input distribution
Arg:
distribution: Numpy array.
"""
size = distribution.shape[0]
self.__alias = np.zeros(size, dtype=np.int64)
self.__prob = np.zeros(size)
sum_ = np.sum(distribution)
p = distribution / sum_ * size # Scale up probability.
large, small = [], []
for i, p_ in enumerate(p):
if p_ < 1.0:
small.append(i)
else:
large.append(i)
while large and small:
l = small[0]
g = large[0]
small.pop(0)
large.pop(0)
self.__prob[l] = p[l]
self.__alias[l] = g
p[g] = p[g] + p[l] - 1 # A more numerically stable option.
if p[g] < 1.0:
small.append(g)
else:
large.append(g)
while large:
g = large[0]
large.pop(0)
self.__prob[g] = 1.0
while small:
l = small[0]
small.pop(0)
self.__prob[l] = 1.0
def generate(self):
"""Generate samples from given distribution.
"""
dart1 = rand_k(self.size())
dart2 = int(rand())
return dart1 if dart2 > self.__prob[dart1] else self.__alias[dart1]
def size(self):
return self.__prob.shape[0]