-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_lstm_otc_ocr.py
executable file
·207 lines (169 loc) · 9.51 KB
/
cnn_lstm_otc_ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tensorflow as tf
import utils
from tensorflow.python.training import moving_averages
FLAGS = utils.FLAGS
num_classes = utils.num_classes
class LSTMOCR(object):
def __init__(self, mode):
self.mode = mode
# image
self.inputs = tf.placeholder(tf.float32, [None, FLAGS.image_height, FLAGS.image_width, FLAGS.image_channel])
# SparseTensor required by ctc_loss op
self.labels = tf.sparse_placeholder(tf.int32)
# 1d array of size [batch_size]
self.seq_len = tf.placeholder(tf.int32, [None])
# l2
self._extra_train_ops = []
def build_graph(self):
self._build_model()
self._build_train_op()
self.merged_summay = tf.summary.merge_all()
def _build_model(self):
filters = [64, 128, 128, FLAGS.max_stepsize]
strides = [1, 2]
with tf.variable_scope('cnn'):
with tf.variable_scope('unit-1'):
x = self._conv2d(self.inputs, 'cnn-1', 3, 1, filters[0], strides[0])
x = self._batch_norm('bn1', x)
x = self._leaky_relu(x, 0.01)
x = self._max_pool(x, 2, strides[1])
with tf.variable_scope('unit-2'):
x = self._conv2d(x, 'cnn-2', 3, filters[0], filters[1], strides[0])
x = self._batch_norm('bn2', x)
x = self._leaky_relu(x, 0.01)
x = self._max_pool(x, 2, strides[1])
with tf.variable_scope('unit-3'):
x = self._conv2d(x, 'cnn-3', 3, filters[1], filters[2], strides[0])
x = self._batch_norm('bn3', x)
x = self._leaky_relu(x, 0.01)
x = self._max_pool(x, 2, strides[1])
with tf.variable_scope('unit-4'):
x = self._conv2d(x, 'cnn-4', 3, filters[2], filters[3], strides[0])
x = self._batch_norm('bn4', x)
x = self._leaky_relu(x, 0.01)
x = self._max_pool(x, 2, strides[1])
with tf.variable_scope('lstm'):
# [batch_size, max_stepsize, num_features]
x = tf.reshape(x, [FLAGS.batch_size, -1, filters[3]])
x = tf.transpose(x, [0, 2, 1]) # batch_size * 64 * 48
# shp = x.get_shape().as_list()
# x.set_shape([FLAGS.batch_size, filters[3], shp[1]])
x.set_shape([FLAGS.batch_size, filters[3], 48])
# tf.nn.rnn_cell.RNNCell, tf.nn.rnn_cell.GRUCell
cell = tf.contrib.rnn.LSTMCell(FLAGS.num_hidden, state_is_tuple=True)
if self.mode == 'train':
cell = tf.contrib.rnn.DropoutWrapper(cell=cell, output_keep_prob=0.8)
cell1 = tf.contrib.rnn.LSTMCell(FLAGS.num_hidden, state_is_tuple=True)
if self.mode == 'train':
cell1 = tf.contrib.rnn.DropoutWrapper(cell=cell1, output_keep_prob=0.8)
# Stacking rnn cells
stack = tf.contrib.rnn.MultiRNNCell([cell, cell1], state_is_tuple=True)
# The second output is the last state and we will not use that
outputs, _ = tf.nn.dynamic_rnn(stack, x, self.seq_len, dtype=tf.float32)
# Reshaping to apply the same weights over the timesteps
outputs = tf.reshape(outputs, [-1, FLAGS.num_hidden])
W = tf.get_variable(name='W',
shape=[FLAGS.num_hidden, num_classes],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='b',
shape=[num_classes],
dtype=tf.float32,
initializer=tf.constant_initializer())
self.logits = tf.matmul(outputs, W) + b
# Reshaping back to the original shape
shape = tf.shape(x)
self.logits = tf.reshape(self.logits, [shape[0], -1, num_classes])
# Time major
self.logits = tf.transpose(self.logits, (1, 0, 2))
def _build_train_op(self):
self.global_step = tf.Variable(0, trainable=False)
self.loss = tf.nn.ctc_loss(labels=self.labels,
inputs=self.logits,
sequence_length=self.seq_len)
self.cost = tf.reduce_mean(self.loss)
tf.summary.scalar('cost', self.cost)
self.lrn_rate = tf.train.exponential_decay(FLAGS.initial_learning_rate,
self.global_step,
FLAGS.decay_steps,
FLAGS.decay_rate,
staircase=True)
# self.optimizer = tf.train.RMSPropOptimizer(learning_rate=self.lrn_rate,
# momentum=FLAGS.momentum).minimize(self.cost,
# global_step=self.global_step)
# self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.lrn_rate,
# momentum=FLAGS.momentum,
# use_nesterov=True).minimize(self.cost,
# global_step=self.global_step)
self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.initial_learning_rate,
beta1=FLAGS.beta1,
beta2=FLAGS.beta2).minimize(self.loss,
global_step=self.global_step)
train_ops = [self.optimizer] + self._extra_train_ops
self.train_op = tf.group(*train_ops)
# Option 2: tf.contrib.ctc.ctc_beam_search_decoder
# (it's slower but you'll get better results)
# decoded, log_prob = tf.nn.ctc_greedy_decoder(logits, seq_len,merge_repeated=False)
self.decoded, self.log_prob = tf.nn.ctc_beam_search_decoder(self.logits,
self.seq_len,
merge_repeated=False)
self.dense_decoded = tf.sparse_tensor_to_dense(self.decoded[0], default_value=-1)
def _conv2d(self, x, name, filter_size, in_channels, out_channels, strides):
with tf.variable_scope(name):
kernel = tf.get_variable(name='DW',
shape=[filter_size, filter_size, in_channels, out_channels],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='bais',
shape=[out_channels],
dtype=tf.float32,
initializer=tf.constant_initializer())
con2d_op = tf.nn.conv2d(x, kernel, [1, strides, strides, 1], padding='SAME')
return tf.nn.bias_add(con2d_op, b)
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.variable_scope(name):
params_shape = [x.get_shape()[-1]]
beta = tf.get_variable(
'beta', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable(
'gamma', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
if self.mode == 'train':
mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
moving_variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_mean, mean, 0.9))
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_variance, variance, 0.9))
else:
mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
tf.summary.histogram(mean.op.name, mean)
tf.summary.histogram(variance.op.name, variance)
# elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net.
x_bn = tf.nn.batch_normalization(x, mean, variance, beta, gamma, 0.001)
x_bn.set_shape(x.get_shape())
return x_bn
def _leaky_relu(self, x, leakiness=0.0):
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _max_pool(self, x, ksize, strides):
return tf.nn.max_pool(x,
ksize=[1, ksize, ksize, 1],
strides=[1, strides, strides, 1],
padding='SAME',
name='max_pool')